Download Free Advances In Peptide And Peptidomimetic Design Inspiring Basic Science And Drug Discovery Book in PDF and EPUB Free Download. You can read online Advances In Peptide And Peptidomimetic Design Inspiring Basic Science And Drug Discovery and write the review.

Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery is a book dedicated to Prof. Victor J. Hruby on the occasion of his 80th birthday. This book includes twenty contributions from authors representing diverse multidisciplinary fields of scientific expertise, and is focused on the extraordinary potential of peptides and peptidomimetics as a surging therapeutic modality and as tools for basic research and technology development.
Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery is a book dedicated to Prof. Victor J. Hruby on the occasion of his 80th birthday. This book includes twenty contributions from authors representing diverse multidisciplinary fields of scientific expertise, and is focused on the extraordinary potential of peptides and peptidomimetics as a surging therapeutic modality and as tools for basic research and technology development.
Peptide and Peptidomimetic Therapeutics: From Bench to Beside offers applied, evidence-based instruction on developing and applying peptide therapeutics in disease treatment, driving drug discovery, and improving patient care. Here, researchers, clinicians and students will find tools to harness the full power of peptides and peptidomimetics and improve bioavailability, stability, efficiency and selectivity of new therapeutics and their application in treatment plans. More than 20 leaders in the field share their approaches for identifying and advancing peptide and peptidomimetic therapeutics. Topics examined run from "bench to bedside," beginning with fundamental peptide science, protein-protein interactions and peptide synthesis. Later chapters examine modes for peptide drug delivery, including cell penetration peptide and peptidomimetic delivery, as well as the targeting of specific disease types, peptide therapeutics as applied to infectious disease, cancer, metabolic disorders, neurodegenerative disorders, and skin disorders, and antiparasitic and immunosuppressive peptidomimetics. - Helps researchers and clinicians harness the full of power of peptides and peptidomimetics in their daily work and drug discovery - Features chapters running from "bench to bedside, providing a thorough grounding in fundamental peptide science, drug delivery methods, and targeting of specific disease types - Features chapter contributions from international leaders in peptide science and drug development
With potentially high specificity and low toxicity, biologicals offer promising alternatives to small-molecule drugs. Peptide therapeutics have again become the focus of innovative drug development efforts backed up by a resurgence of venture funds and small biotechnology companies. What does it take to develop a peptide-based medicine? What are the key challenges and how are they overcome? What are emerging therapeutics for peptide modalities? This book answers these questions with a holistic story from molecules to medicine, combining the themes of design, synthesis and clinical applications of peptide-based therapeutics and biomarkers. Chapters are written and edited by leaders in the field from industry and academia and they cover the pharmacokinetics of peptide therapeutics, attributes necessary for commercially successful metabolic peptides, medicinal chemistry strategies for the design of peptidase-resistant peptide analogues, disease classes for which peptide therapeutic are most relevant, and regulatory issues and guidelines. The critical themes covered provide essential background information on what it takes to develop peptide-based medicine from a chemistry perspective and views on the future of peptide drugs. This book will be a valuable resource not only as a reference book for the researcher engaged in academic and pharmaceutical setting, from basic research to manufacturing and from organic chemistry to biotechnology, but also a valuable resource to graduate students to understand discovery and development process for peptide-based medicine.
Fragment-based drug discovery is a rapidly evolving area of research, which has recently seen new applications in areas such as epigenetics, GPCRs and the identification of novel allosteric binding pockets. The first fragment-derived drug was recently approved for the treatment of melanoma. It is hoped that this approval is just the beginning of the many drugs yet to be discovered using this fascinating technique. This book is written from a Chemist's perspective and comprehensively assesses the impact of fragment-based drug discovery on a wide variety of areas of medicinal chemistry. It will prove to be an invaluable resource for medicinal chemists working in academia and industry, as well as anyone interested in novel drug discovery techniques.
Small Molecule Drug Discovery: Methods, Molecules and Applications presents the methods used to identify bioactive small molecules, synthetic strategies and techniques to produce novel chemical entities and small molecule libraries, chemoinformatics to characterize and enumerate chemical libraries, and screening methods, including biophysical techniques, virtual screening and phenotypic screening. The second part of the book gives an overview of privileged cyclic small molecules and major classes of natural product-derived small molecules, including carbohydrate-derived compounds, peptides and peptidomimetics, and alkaloid-inspired compounds. The last section comprises an exciting collection of selected case studies on drug discovery enabled by small molecules in the fields of cancer research, CNS diseases and infectious diseases. The discovery of novel molecular entities capable of specific interactions represents a significant challenge in early drug discovery. Small molecules are low molecular weight organic compounds that include natural products and metabolites, as well as drugs and other xenobiotics. When the biological target is well defined and understood, the rational design of small molecule ligands is possible. Alternatively, small molecule libraries are being used for unbiased assays for complex diseases where a target is unknown or multiple factors contribute to a disease pathology. - Outlines modern concepts and synthetic strategies underlying the building of small molecules and their chemical libraries useful for drug discovery - Provides modern biophysical methods to screening small molecule libraries, including high-throughput screening, small molecule microarrays, phenotypic screening and chemical genetics - Presents the most advanced chemoinformatics tools to characterize the structural features of small molecule libraries in terms of chemical diversity and complexity, also including the application of virtual screening approaches - Gives an overview of structural features and classification of natural product-derived small molecules, including carbohydrate derivatives, peptides and peptidomimetics, and alkaloid-inspired small molecules
Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair highlights the various important considerations that go into biomaterial development, both in terms of fundamentals and applications. After covering a general introduction to protein and cell interactions with biomaterials, the book discusses proteins in biomaterials that mimic the extracellular matrix (ECM). The properties, fabrication and application of peptide biomaterials and protein-based biomaterials are discussed in addition to in vivo and in vitro studies. This book is a valuable resource for researchers, scientists and advanced students interested in biomaterials science, chemistry, molecular biology and nanotechnology. - Presents an all-inclusive and authoritative coverage of the important role which protein and peptides play as biomaterials for tissue regeneration - Explores protein and peptides from the fundamentals, to processing and applications - Written by an international group of leading biomaterials researchers
This volume explores the latest techniques and strategies used to study the field of peptide macrocycles. The chapters in this book ae organized into four parts: macrocycles synthesis, combinational library synthesis and screening, macrocycle characterization, and unique applications. Part One looks at a variety of peptide cyclization methodologies, and Part Two describes methods for the creation of peptide macrocycles libraries and their subsequent screening against biological targets of interest. Part Three discusses the study and characterization of peptide macrocycle-target interactions, and Part Four introduces unique applications for peptide macrocycles, from higher-order structure formation to post-synthetic functional modifications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Peptide Macrocycles: Methods and Protocols is a valuable resource for both novice and expert researchers looking to learn more about this developing field.
This book presents an authoritative review of the most significant findings about all the epigenetic targets (writers, readers, and erasers) and their implication in physiology and pathology. The book also covers the design, synthesis and biological validation of epigenetic chemical modulators, which can be useful as novel chemotherapeutic agents. Particular attention is given to the chemical mechanisms of action of these molecules and to the drug discovery prose which allows their identification. This book will appeal to students who want to know the extensive progresses made by epigenetics (targets and modulators) in the last years from the beginning, and to specialized scientists who need an instrument to quickly search and check historical and/or updated notices about epigenetics.
Protein-protein interactions (PPI) are at the heart of the majority of cellular processes, and are frequently dysregulated or usurped in disease. Given this central role, the inhibition of PPIs has been of significant interest as a means of treating a wide variety of diseases. However, there are inherent challenges in developing molecules capable of disrupting the relatively featureless and large interfacial areas involved. Despite this, there have been a number of successes in this field in recent years using both traditional drug discovery approaches and innovative, interdisciplinary strategies using novel chemical scaffolds. This book comprehensively covers the various aspects of PPI inhibition, encompassing small molecules, peptidomimetics, cyclic peptides, stapled peptides and macrocycles. Illustrated throughout with successful case studies, this book provides a holistic, cutting-edge view of the subject area and is ideal for chemical biologists and medicinal chemists interested in developing PPI inhibitors.