Download Free Advances In Number Theory And Applied Analysis Book in PDF and EPUB Free Download. You can read online Advances In Number Theory And Applied Analysis and write the review.

Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Presently, the exploration of the applications of different techniques and tools of number theory and mathematical analysis are extensively prevalent in various areas of engineering, mathematical, physical, biological and statistical sciences. This book will present the most recent developments in these two fields through contributions from eminent scientists and mathematicians worldwide.The book will present the current state of the art development in these two areas through original new contributions and surveys. As such, readers will find several useful tools and techniques to develop their skills and expertise in number theory and applied analysis. New research directions are also indicated in each of the chapters. This book is meant for graduate students, faculty and researchers willing to expand their knowledge in number theory and mathematical analysis. The readers of this book will require minimum prerequisites of analysis, topology, number theory and functional analysis.
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation
This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague’s astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
This book addresses key aspects of recent developments in applied mathematical analysis and its use. It also highlights a broad range of applications from science, engineering, technology and social perspectives. Each chapter investigates selected research problems and presents a balanced mix of theory, methods and applications for the chosen topics. Special emphasis is placed on presenting basic developments in applied mathematical analysis, and on highlighting the latest advances in this research area. The book is presented in a self-contained manner as far as possible, and includes sufficient references to allow the interested reader to pursue further research in this still-developing field. The primary audience for this book includes graduate students, researchers and educators; however, it will also be useful for general readers with an interest in recent developments in applied mathematical analysis and applications.
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Number Theory in Science and Communication introductes non-mathematicians to the fascinating and diverse applications of number theory. This best-selling book stresses intuitive understanding rather than abstract theory. This revised fourth edition is augmented by recent advances in primes in progressions, twin primes, prime triplets, prime quadruplets and quintruplets, factoring with elliptic curves, quantum factoring, Golomb rulers and "baroque" integers.
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.