Download Free Advances In Nanofibre Research Book in PDF and EPUB Free Download. You can read online Advances In Nanofibre Research and write the review.

Nanofibres are defined as fibres with diameters on the order of 100 nanometres. They can be produced by interfacial polymerisation and electrospinning. Nanofibres are included in garments, insulation and in energy storage. They are also used in medical applications, which include drug and gene delivery, artificial blood vessels, artificial organs and medical facemasks. This book presents some fascinating phenomena associated with the remarkable features of nanofibres in electrospinning processes and new progress in applications of electrospun nanofibres. It also provides an overview of structure-property relationships, synthesis and purification, and potential applications of electrospun nanofibres. The collection of topics in this book aims to reflect the diversity of recent advances in electrospun nanofibres with a broad perspective which may be useful for scientists as well as for graduate students and engineers.
In the first two volumes of this series, we have shown that submicron-sized and nanofibres can be prepared from a polymer solution by means of electrospinning. The third volume of 'Advances in Nanofibre Research' describes the many directions in which the science and technology of polymer nanofibres is now evolving and highlights the current understanding of polymer nanofibres and nanocomposites. In this volume, readers can find chapters which compare the occurrence, stability, and functional properties of fibrous nanomaterials of different sizes and shapes. The new and emerging applications of polymer nanofibres are presented alongside the basic underlying science and technology. With discussions exploring such practical applications as filters, fabrics, scaffolds for tissue engineering, the book provides polymer scientists and engineers with a comprehensive, practical 'how-to' reference work. Among the main aspects covered is the book's presentation of the science and technology of electrospinning, including practical information on how to electrospin different polymer systems.
Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science
As nanomaterials become increasingly present in our daily lives, pertinent questions regarding their safety arise. Nanomaterial risk assessment, as in other areas, directs much of the effort worldwide in defining guidelines that may be translated into national or international directives. Nanomaterials encompass different entities, from nanoparticles to nanostructured materials, with specific effects over cells, tissues, organisms and ecosystems depending on their biophysical characteristics. Such interactions will directly affect the impact of novel nanotechnologies. This book aims to provide the reader with a comprehensive overview of the current state of the art in nanotoxicology, featuring the most important developments and critical issues regarding the use of and exposure to nanoparticles.
Discover new and emerging applications of polymer nanofibers alongside the basic underlying science and technology. With discussions exploring such practical applications as filters, fabrics, sensors, catalysts, scaffolding, drug delivery, and wound dressings, the book provides polymer scientists and engineers with a comprehensive, practical "how-to" reference. Moreover, the author offers an expert assessment of polymer nanofibers' near-term potential for commercialization. Among the highlights of coverage is the book's presentation of the science and technology of electrospinning, including practical information on how to electrospin different polymer systems.
This book titled Nanofiber Research - Reaching New Heights contains a number of latest research results on growth and developments on material fibers in nanoscale. It is a promising novel research area that has received a lot of interest in recent years. This book includes interesting reports on cutting-edge science and technology related to synthesis, morphology, control, self-assembly and prospective application of nanofibers. I hope that the book will lead to systematization of nanofiber science, creation of new nanofiber research field and further promotion of nanofiber technology. This potentially unique work offers various approaches on the implementation of nanofibers. As it is widely known, nanotechnology presents the control of matter at the nanoscale and nano-dimensions within few nanometers, whereas this exclusive phenomenon enables us to regulate and control novel applications with nanofibers. This book presents an overview of recent and current nanofibers fundamental, significant applications and implementation research worldwide. It examined the methods of nanofiber synthesis, types of fibers used and potential applications associated with nanofiber researches. It is an important booklet for research organizations, governmental research centers, academic libraries and R
Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science. - Gathers together a broad spectrum of research on nanocellulose, with emphasis on the outstanding reinforcing potential when nanocellulose is included into a polymer matrix or as an additive to paper - Demonstrates systematic approaches and investigations from processing, design, characterization and applications of nanocellulose - Presents a useful reference and technical guide for nanocomposite materials R&D sectors, university academics and postgraduate students (Masters and PhD) and industrialists working in material commercialization
This Handbook covers all aspects related to Nanofibers, from the experimental set-up for their fabrication to their potential industrial applications. It describes several kinds of nanostructured fibers such as metal oxides, natural polymers, synthetic polymers and hybrid inorganic-polymers or carbon-based materials. The first part of the Handbook covers the fundamental aspects, experimental setup, synthesis, properties and physico-chemical characterization of nanofibers. Specifically, this part details the history of nanofibers, different techniques to design nanofibers, self-assembly in nanofibers, critical parameters of synthesis, fiber alignment, modeling and simulation, types and classifications of nanofibers, and signature physical and chemical properties (i.e. mechanical, electrical, optical and magnetic), toxicity and regulations, bulk and surface functionalization and other treatments to allow them to a practical use. Characterization methods are also deeply discussed here. The second part of the Handbook deals with global markets and technologies and emerging applications of nanofibers, such as in energy production and storage, aerospace, automotive, sensors, smart textile design, energy conversion, tissue engineering, medical implants, pharmacy and cosmetics. Attention is given to the future of research in these areas in order to improve and spread the applications of nanofibers and their commercialization.
In recent times, polymer nanocomposites have attracted a great deal of scientific interest due to their unique advantages over conventional plastic materials, such as superior strength, modulus, thermal stability, thermal and electrical conductivity, and gas barrier. They are finding real and fast-growing applications in wide-ranging fields such as automotive, aerospace, electronics, packaging, and sports. This book focuses on the development of polymer nanocomposites as an advanced material for textile applications, such as fibers, coatings, and nanofibers. It compiles and details cutting-edge research in the science and nanotechnology of textiles with special reference to polymer nanocomposites in the form of invited chapters from scientists and subject experts from various institutes from all over the world. They include authors who are actively involved in the research and development of polymer nanocomposites with a wide range of functions—including antimicrobial, flame-retardant, gas barrier, shape memory, sensor, and energy-scavenging—as well as medical applications, such as tissue engineering and wound dressings, to create a new range of smart and intelligent textiles. Edited by Mangala Joshi, a prominent nanotechnology researcher at the premier Indian Institute of Technology, Delhi, India, this book will appeal to anyone involved in nanotechnology, nanocomposites, advanced materials, polymers, fibers and textiles, and technical textiles.
Two of the hottest research topics today are hybrid nanomaterials and flexible electronics. As such, this book covers both topics with chapters written by experts from across the globe. Chapters address hybrid nanomaterials, electronic transport in black phosphorus, three-dimensional nanocarbon hybrids, hybrid ion exchangers, pressure-sensitive adhesives for flexible electronics, simulation and modeling of transistors, smart manufacturing technologies, and inorganic semiconductors.