Download Free Advances In Molecular Similarity Book in PDF and EPUB Free Download. You can read online Advances In Molecular Similarity and write the review.

The aim of this text is to provide reviews and monographs on topics involving molecular similarity, ranging from the fundamental physical properties underlying molecular behaviour to applications in industrially important fields such as pharmaceutical drug design and molecular engineering. The editors hope that this series will encourage new ideas and approaches, help to systematize the rapidly accumulating new chemical information, and make chemistry better understood and better applied.
This volume highlights some of the advances in molecular similarity. Molecular similarity research is a dynamic field where the rapid transfer of ideas and methodologies from the theoretical, quantum chemical and mathematical chemistry disciplines to efficient algorithms and computer programs used in industrially important applications is especially evident. These applications often serve as motivating factors toward new advances in the fundamental and theoretical fields, and the combination of intellectual challenge and practical utility provides mutual advantages to theoreticians and experimentalists. The aim of this volume is to present an overview of the current methodologies of molecular similarity studies, and to point out new challenges, unsolved problems, and areas where important new advances can be expected.
Offers authoritative overviews of topics related to the definition, computation and application of molecular similarity and emphasizes current research trends with molecular similarity as the unifying concept. Introduces and defines the concept of molecular similarity and explains how it can be used to explore the data containing 2-D and 3-D chemical information. Addresses the basic problem of relating chemical structures to their associated chemical and biological properties. Final chapters illustrate the use of similarity arguments in the study of chemical reaction pathways and present theoretical approaches to the concept of molecular similarity.
In recent years the fundamental concepts and applied methodologies of molecular similarity analysis have experienced a revolutionary development. Motivated by the increased degree of understanding of elementary molecular properties on the levels ranging from fundamental quantum chemistry to the complex interactions of biomolecules, and aided by the spectacular progress in computer technology and access to computer power, the area has opened up to many new ideas and new approaches. This book covers topics in quantum similarity approaches, electron density shape analysis methods, and it provides better theoretical understanding of molecular similarity. Additionally, quantitative shape analysis, especially activity relations (QShAR) and the prediction of the pharmacological or toxicological effects of molecules in the related context of quantum QSAR (QQSAR). This volume written by the experts in the various subfields of molecular similarity, provides a collection of the most recent ideas, advances, and methodologies. It is the hope of the Editors that by representing these topics within a single volume, the readers will find a balanced overview of the status of the field. We also hope that the book will serve as a tool for selecting and assessing the best approach for various new types of problems of molecular similarity that may arise and it will provide a set of easy references for further studies and applications.
Volumes 2 and 3 of the 3D QSAR in Drug Design series aim to review the progress being made in CoMFA and other 3D QSAR approaches since the publication of the highly successful first volume about four years ago. Volume 2 (Ligand-Protein Interactions and Molecular Similarity) divides into three sections dealing with Ligand-Protein Interactions, Quantum Chemical Models and Molecular Dynamics Simulations, and Pharmacophore Modelling and Molecular Similarity, respectively. Volume 3 (Recent Advances) is also divided into three sections, namely 3D QSAR Methodology: CoMFA and Related Approaches, Receptor Models and Other 3D QSAR Approaches, and 3D QSAR Applications. More than seventy distinguished scientists have contributed nearly forty reviews of their work and related research to these two volumes which are of outstanding quality and timeliness. These works present an up-to-date coverage of the latest developments in all fields of 3D QSAR.
Molecular chirality is one of the fundamental aspects of chemistry. Chirality properties of molecules have implications in a wide variety of subjects, ranging from the basic quantum mechanical properties of simple of a few atoms to molecular optical activity, asymmetric synthesis, systems and the folding pattern of proteins. Chirality, in both the geometrical and the topological sense, has also been the subject of investigations in various branches of mathematics. In particular, new developments in a branch of topology, called knot theory, as well as in various branches of discrete mathematics, have led to a novel perspective on the topological aspects of molecular chirality. Some of the mathematical advances have already found applications to the interpretation of new concepts in theoretical chemistry and mathematical chemistry, as well as to novel synthetic approaches leading to new molecules of exceptional structural properties. Some of the new developments in molecular chirality have been truly fundamental to the theoretical understanding and to the actual practice of many aspects of chemistry. The progress in this field has been very rapid, even accelerating in recent years, and a review appears more than justified. This book offers a selection of subjects covering some of the latest developments. Our primary aim is to clarify some of the basic concepts that are the most prone to misinterpretation and to provide brief introductions to some of those subjects that are expected to have further, important contributions to our understanding of molecular properties and chemical reactivity.
Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.
The authors introduce the concept of Molecular Quantum Similarity, developed in their laboratory, in a didactic form. The basis of the concept combines quantum theoretical calculations with molecular structure and properties even for large molecules. They give definitions and procedures to compute similarities molecules and provide graphical tools for visualization of sets of molecules as n-dimensional point charts.
This book focuses on the theoretical problems associated with molecular diversity as it is being applied in the pharmaceutical industry. Therefore, this book deals with algorithms that are involved in understanding chemical space and selection of diverse sets of structures. The algorithms also deal with the problem of focused diversity where chemical libraries are being created within a structured physical volume. Diversity is necessarily connected to combinational chemistry, although this book is limited to the application of diversity methods to combinational chemistry and does not deal with synthetic methods. It is this focus on algorithms and strategies for exploiting molecular diversity that makes it different from books on combinational chemistry. The intended readership of the book falls into two categories: those actively engaged in applying molecular diversity in the chemical industry and those in academia who are developing strategies to embrace, understand and accept the many problems thrown up by this new research field of molecular diversity.
Chirality is a fundamental, persistent, but often overlooked feature of all living organisms on the molecular level as well as on the macroscopic scale. The high degree of preference for only one of two possible mirror image forms in Nature, often called biological homochirality is a puzzling, and not yet fully understood, phenomenon. This book covers biological homochirality from an interdisciplinary approach - contributions range from synthetic chemists, theoretical topologists and physicists, from palaeontologists and biologists to space scientists and representatives of the pharmaceutical and materials industries. Topics covered include - theory of biochirality, origins of biochirality, autocatalysis with amplification of chirality, macroscopic (present) biochirality, fossil records of chiral organisms - paleochirality, extraterrestrial origin of chirality, exceptions to the rule of biological homochirality, D-amino acids, chemical transfer of chirality, PV effects, and polarised radiation chemistry.