Download Free Advances In Modeling And Simulation In Textile Engineering Book in PDF and EPUB Free Download. You can read online Advances In Modeling And Simulation In Textile Engineering and write the review.

Advances in Modeling and Simulation in Textile Engineering: New Concepts, Methods, and Applications explains the advanced principles and techniques that can be used to solve textile engineering problems using numerical modeling and simulation. The book draws on innovative research and industry practice to explain methods for the modeling of all of these processes, helping readers apply computational power to more areas of textile engineering. Experimental results are presented and linked closely to processes and methods of implementation. Diverse concepts such as heat transfer, fluid dynamics, three-dimensional motion, and multi-phase flow are addressed. Finally, tools, theoretical principles, and numerical models are extensively covered. Textile engineering involves complex processes which are not easily expressed numerically or simulated, such as fiber motion simulation, yarn to fiber formation, melt spinning technology, optimization of yarn production, textile machinery design and optimization, and modeling of textile/fabric reinforcements. Provides new approaches and techniques to simulate a wide range of textile processes from geometry to manufacturing Includes coverage of detailed mathematical methods for textiles, including neural networks, genetic algorithms, and the finite element method Addresses modeling techniques for many different phenomena, including heat transfer, fluid dynamics and multi-phase flow
The use of mathematical modelling and computer simulation can vastly improve the quality, efficiency and economic success of textile technology. Simulation in textile technology provides a comprehensive review of the key principles, applications and benefits of modelling for textile production.After an introduction to modelling and simulation, Simulation in textile technology goes on to review the principles and applications of the main types of model. The book first discusses neural networks and their applications before going on to explore evolutionary methods and fuzzy logic. It then considers computational fluid dynamics and finite element modelling. The modelling of fibrous structures and yarns are considered in the following chapters, along with wound packages, woven, braided and knitted structures. The book concludes by reviewing the simulation of textile processes and machinery.With its distinguished editor and team of expert contributors, Simulation in textile technology is a valuable reference tool for all those involved in both developing models of textile processes and those applying them to improve process efficiency and product quality. Provides a comprehensive review of the key principles, applications and benefits of modelling for textile production Discusses neural networks and their applications before going on to explore evolutionary methods and fuzzy logic Considers the modelling of fibrous structures and yarns, along with wound packages, woven, braided and knitted structures
The aim of the book is to provide engineers with a practical guide to Finite Element Modelling (FEM) in Abaqus CAE software. The guide is in the form of step-by-step procedures concerning yarns, woven fabric and knitted fabrics modelling, as well as their contact with skin so that the simulation of haptic perception between textiles and skin can be
The use of mathematical modelling and computer simulation can vastly improve the quality, efficiency and economic success of textile technology. Simulation in textile technology provides a comprehensive review of the key principles, applications and benefits of modelling for textile production. After an introduction to modelling and simulation, Simulation in textile technology goes on to review the principles and applications of the main types of model. The book first discusses neural networks and their applications before going on to explore evolutionary methods and fuzzy logic. It then considers computational fluid dynamics and finite element modelling. The modelling of fibrous structures and yarns are considered in the following chapters, along with wound packages, woven, braided and knitted structures. The book concludes by reviewing the simulation of textile processes and machinery. With its distinguished editor and team of expert contributors, Simulation in textile technology is a valuable reference tool for all those involved in both developing models of textile processes and those applying them to improve process efficiency and product quality. Provides a comprehensive review of the key principles, applications and benefits of modelling for textile productionDiscusses neural networks and their applications before going on to explore evolutionary methods and fuzzy logicConsiders the modelling of fibrous structures and yarns, along with wound packages, woven, braided and knitted structures.
The aim of the book is to provide engineers with a practical guide to Finite Element Modelling (FEM) in Abaqus CAE software. The guide is in the form of step-by-step procedures concerning yarns, woven fabric and knitted fabrics modelling, as well as their contact with skin so that the simulation of haptic perception between textiles and skin can be provided. The specific modelling procedure will be proceeded by a theoretical background concerning mechanical characteristics of the modelled elements or phenomena. Models will be validated and discussed. In addition, virtual object tests results will be presented and compared to the outcome of the modelling process.
Advanced Structural Textile Composites Forming: Characterization, Modeling, and Simulation comprehensively describes the influence of fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization, covering the latest advances in the composites forming field. Part one reviews textile reinforcement architectures and discusses the forming behaviors of important 2D and 3D fabrics. Part two discusses numerical models to conduct simulation analysis of different structural composites forming at mesoscopic and macroscopic scales, in particular, 3D preforms with through-the-thickness yarns. Part three looks at the latest developments in the relationship between forming and other steps in composite manufacturing, such as resin injection, and automated fiber placement (AFP) and the effects on certain mechanical properties, such as structural damage and impact resistance. The book will be an essential reference for academic researchers, industrial engineers and materials scientists working with the manufacture and design of fiber-reinforced composite materials. Describes the influence of the fiber/fabric architectures and properties on composites forming, along with their deformability and structural optimization Provides numerical modeling and simulation of different fiber-reinforced composites forming at mesoscopic and macroscopic scales, in particular, reinforcements with discontinue fibers, and 3D preforms with through-the-thickness yarns Discusses cutting edge topics such as resin injection, and automated fiber placement (AFP) and the effects of forming results on mechanical properties such as structural damage and impact resistances
Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates. Examines the most recent analysis models for advanced composite materials in a coherent and comprehensive manner Investigates numerical modelling approaches to interlaminar failure and intralaminar failure in advanced composite materials Reviews advanced numerical algorithms for modeling and simulation of failure Examines various engineering and scientific applications of numerical modelling for analysis of failure in advanced composite materials
Focusing on the importance of the application of statistical techniques, this book covers the design of experiments and stochastic modeling in textile engineering. Textile Engineering: Statistical Techniques, Design of Experiments and Stochastic Modeling focuses on the analysis and interpretation of textile data for improving the quality of textile processes and products using various statistical techniques. FEATURES Explores probability, random variables, probability distribution, estimation, significance test, ANOVA, acceptance sampling, control chart, regression and correlation, design of experiments and stochastic modeling pertaining to textiles Presents step-by-step mathematical derivations Includes MATLAB® codes for solving various numerical problems Consists of case studies, practical examples and homework problems in each chapter This book is aimed at graduate students, researchers and professionals in textile engineering, textile clothing, textile management and industrial engineering. This book is equally useful for learners and practitioners in other scientific and technological domains.
The textile industry can experience a vast array of problems. Modelling represents a group of techniques that have been widely used to explore the nature of these problems, it can highlight the mechanisms involved and lead to predictions of the textile behaviour. This book provides an overview of how textile modelling techniques can be used successfully within the textile industry for solving various problems. The first group of chapters reviews the different types of models and methods available for predicting textile structures and behaviour. Chapters include modelling of yarn, woven and nonwoven materials. The second group of chapters presents a selection of case studies, expressing the strengths and limitations and how various models are applied in specific applications. Case studies such as modelling colour properties for textiles and modelling, simulation and control of textile dyeing are discussed. With its distinguished editor and international range of contributors, Modelling and predicting textile behaviour is essential reading material for textile technologists, fibre scientists and textile engineers. It will also be beneficial for academics researching this important area. Provides an overview of the different types of models and methods that can be used successfully within the textile industry Reviews the structural hierarchy in textile materials fundamental to the modelling of textile fibrous structures Assesses the strengths and weaknesses of different textile models and how specific models are applied in different situations
The manufacturing processes of composite materials are numerous and often complex. Continuous research into the subject area has made it hugely relevant with new advances enriching our understanding and helping us overcome design and manufacturing challenges. Advances in Composites Manufacturing and Process Design provides comprehensive coverage of all processing techniques in the field with a strong emphasis on recent advances, modeling and simulation of the design process. Part One reviews the advances in composite manufacturing processes and includes detailed coverage of braiding, knitting, weaving, fibre placement, draping, machining and drilling, and 3D composite processes. There are also highly informative chapters on thermoplastic and ceramic composite manufacturing processes, and repairing composites. The mechanical behaviour of reinforcements and the numerical simulation of composite manufacturing processes are examined in Part Two. Chapters examine the properties and behaviour of textile reinforcements and resins. The final chapters of the book investigate finite element analysis of composite forming, numerical simulation of flow processes, pultrusion processes and modeling of chemical vapour infiltration processes. Outlines the advances in the different methods of composite manufacturing processes Provides extensive information on the thermo-mechanical behavior of reinforcements and composite prepregs Reviews numerical simulations of forming and flow processes, as well as pultrusion processes and modeling chemical vapor infiltration