Download Free Advances In Microscale And Nanoscale Thermal And Fluid Sciences Book in PDF and EPUB Free Download. You can read online Advances In Microscale And Nanoscale Thermal And Fluid Sciences and write the review.

Applications of microscale and nanoscale thermal and fluid transport phenomena involved in traditional industries and highly specialised fields such as bioengineering, micro-fabricated fluidic systems, microelectronics, aerospace technology, micro heat pipes, and chips cooling etc., have become especially important since the late 20th century. However, microscale and nanoscale thermal and fluid transport phenomena are quite different from those of conventional scale or macroscale. Many researchers have been conducting research on the thermal and fluid transport phenomena at the microscale and nanoscale levels to understand the very complex phenomena involved. New methods have been applied to measure the basic physical parameters at microscale and are continuously under development. New prediction methods have also been developed to cover both macroscale and microscale channels and are being continuously investigated. New theories and mechanisms are also urgently needed for the fluid flow and heat transfer phenomena at microscale and nanoscale. There are many issues to be clarified from both theoretical and applied aspects in the microscale and nanoscale thermal and fluid transport phenomena. Furthermore, interdisciplinary research areas are also rapidly under development. For example, as a new research frontier of nanotechnology, the research of nanofluid two-phase flow and thermal physics is rapidly growing. However, it has also posed new challenges as there are quite contradictory results in the available research.
Applications of microscale and nanoscale thermal and fluid transport phenomena involved in traditional industries and highly specialised fields such as bioengineering, micro-fabricated fluidic systems, microelectronics, aerospace technology, micro heat pipes, chips cooling etc. have been becoming especially important since the late 20th century. However, microscale and nanoscale thermal and fluid transport phenomena are quite different from those of conventional scale or macroscale. Quite a few studies have been conducted to understand the very complex phenomena involved at microscale and nanoscale. New methods have been applied to measure the basic physical parameters at microscale and are continuously under development. New prediction methods have also been developed to cover both macroscale and microscale channels and are being continuously under investigation. New theories and mechanisms are also urgently needed for the fluid flow and heat transfer phenomena at microscale and nanoscale. There are many issues to be clarified from both theoretical and applied aspects in the microscale and nanoscale thermal and fluid transport phenomena. Furthermore, Interdisciplinary research areas are also rapidly under development. For example, as a new research frontier of nanotechnology, the research of nanofluid two-phase flow and thermal physics is rapidly growing, however, it has also posed new challenges as there are quite contradictory results in the available research.
This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). This volume focuses on current research in fluid and thermal engineering and covers topics such as heat transfer enhancement and heat transfer equipment, heat transfer in nuclear applications, microscale and nanoscale transport, multiphase transport and phase change, multi-mode heat transfer, numerical methods in fluid mechanics and heat transfer, refrigeration and air conditioning, thermodynamics, space heat transfer, transport phenomena in porous media, turbulent transport, theoretical and experimental fluid dynamics, flow measurement techniques and instrumentation, computational fluid dynamics, fluid machinery, turbo machinery and fluid power. Given the scope of its contents, this book will be interesting for students, researchers as well as industry professionals.
This book provides a vehicle for the exchange and dissemination of original research results, technical notes, and state-of-the-art reviews pertaining to thermal and fluid transport phenomena at microscales and nanoscales. It covers a wide range of topics on fundamentals and applications of microscale and nanoscale transfer processes of mass, momentum, and energy such as microscale and nanoscale heat transfer and fluid flow, nanofluid heat transfer and flow, microfluidics, nanofluidics, and technologies based on these transport processes such as various microscale and nanoscale thermal and fluid devices.
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
This research book gives a general introduction to gas turbine heat transfer topics and also specialises in topics such as external and internal blade cooling, combuster wall cooling, leading and trailing edge cooling and recuperators.
Featuring contributions by leading researchers in the field, Nanoparticle Heat Transfer and Fluid Flow explores heat transfer and fluid flow processes in nanomaterials and nanofluids, which are becoming increasingly important across the engineering disciplines. The book covers a wide range, from biomedical and energy conversion applications to materials properties, and addresses aspects that are essential for further progress in the field, including numerical quantification, modeling, simulation, and presentation. Topics include: A broad review of nanofluid applications, including industrial heat transfer, biomedical engineering, electronics, energy conversion, membrane filtration, and automotive An overview of thermofluids and their importance in biomedical applications and heat-transfer enhancement A deeper look at biomedical applications such as nanoparticle hyperthermia treatments for cancers Issues in energy conversion from dispersed forms to more concentrated and utilizable forms Issues in nanofluid properties, which are less predictable and less repeatable than those of other media that participate in fluid flow and heat transfer Advances in computational fluid dynamic (CFD) modeling of membrane filtration at the microscale The role of nanofluids as a coolant in microchannel heat transfer for the thermal management of electronic equipment The potential enhancement of natural convection due to nanoparticles Examining key topics and applications in nanoscale heat transfer and fluid flow, this comprehensive book presents the current state of the art and a view of the future. It offers a valuable resource for experts as well as newcomers interested in developing innovative modeling and numerical simulation in this growing field.
Advances in Nanofluid Heat Transfer covers the broad definitions, brief history, preparation techniques, thermophysical properties, heat transfer characteristics, and emerging applications of hybrid nanofluids. Starting with the basics, this book advances step-by-step toward advanced topics, with mathematical models, schematic diagrams and discussions of the experimental work of leading researchers. By introducing readers to new techniques, this book helps readers resolve existing problems and implement nanofluids in innovative new applications. This book provides detailed coverage of stability and reliable measurement techniques for nanofluid properties, as well as different kinds of base fluids. Providing a clear understanding of what happens at the nanoscale, the book is written to be used by engineers in industry as well as researchers and graduate students. Covers new applications of nanofluids, along with key challenges encountered in the commercialization of this technology Highlights new nanofluid properties and associated numerical modeling methods Addresses the very latest topics in nanofluids sciences, such as ionic nanofluids