Download Free Advances In Inverse Problems For Partial Differential Equations Book in PDF and EPUB Free Download. You can read online Advances In Inverse Problems For Partial Differential Equations and write the review.

This volume contains the proceedings of two AMS Special Sessions “Recent Developments on Analysis and Computation for Inverse Problems for PDEs,” virtually held on March 13–14, 2021, and “Recent Advances in Inverse Problems for Partial Differential Equations,” virtually held on October 23–24, 2021. The papers in this volume focus on new results on numerical methods for various inverse problems arising in electrical impedance tomography, inverse scattering in radar and optics problems, reconstruction of initial conditions, control of acoustic fields, and stock price forecasting. The authors studied iterative and non-iterative approaches such as optimization-based, globally convergent, sampling, and machine learning-based methods. The volume provides an interesting source on advances in computational inverse problems for partial differential equations.
This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.
Driven by the advancement of industrial mathematics and the need for impact case studies, Inverse Problems with Applications in Science and Engineering thoroughly examines the state-of-the-art of some representative classes of inverse and ill-posed problems for partial differential equations (PDEs). The natural practical applications of this examination arise in heat transfer, electrostatics, porous media, acoustics, fluid and solid mechanics – all of which are addressed in this text. Features: Covers all types of PDEs — namely, elliptic (Laplace’s, Helmholtz, modified Helmholtz, biharmonic and Stokes), parabolic (heat, convection, reaction and diffusion) and hyperbolic (wave) Excellent reference for post-graduates and researchers in mathematics, engineering and any other scientific discipline that deals with inverse problems Contains both theory and numerical algorithms for solving all types of inverse and ill-posed problems
While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.
This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
This book is a collection of lecture notes for the LIASFMA Hangzhou Autumn School on 'Control and Inverse Problems for Partial Differential Equations' which was held during October 17-22, 2016 at Zhejiang University, Hangzhou, China. This autumn school is one of the activities organized by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA). Established jointly by eight institutions in China and France in 2014, LIASFMA aims at providing a platform for many leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in broad areas of applied mathematics.The book provides the readers with a unique and valuable opportunity to learn from and communicate with leading experts in control and inverse problems. And the readers are exposed not only to the basic theories and methods but also to the forefront of research directions in both fields.
This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
The book describes a useful tool for solving linear inverse problems subject to convex constraints. The method of maximum entropy in the mean automatically takes care of the constraints. It consists of a technique for transforming a large dimensional inverse problem into a small dimensional non-linear variational problem. A variety of mathematical aspects of the maximum entropy method are explored as well.