Download Free Advances In Hydraulics And Hydroinformatics Volume 2 Book in PDF and EPUB Free Download. You can read online Advances In Hydraulics And Hydroinformatics Volume 2 and write the review.

This Special Issue reports on recent research trends in hydraulics, hydrodynamics, and hydroinformatics, and their novel applications in practical engineering. The Issue covers a wide range of topics, including open channel flows, sediment transport dynamics, two-phase flows, flow-induced vibration and water quality. The collected papers provide insight into new developments in physical, mathematical, and numerical modelling of important problems in hydraulics and hydroinformatics, and include demonstrations of the application of such models in water resources engineering.
This book gathers a collection of extended papers based on presentations given during the SimHydro 2017 conference, held in Sophia Antipolis, Nice, France on June 14–16, 2017. It focuses on how to choose the right model in applied hydraulics and considers various aspects, including the modeling and simulation of fast hydraulic transients, 3D modeling, uncertainties and multiphase flows. The book explores both limitations and performance of current models and presents the latest developments in new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It gathers the lastest theoretical and innovative developments in the modeling field and presents some of the most advance applications on various water related topics like uncertainties, flood simulation and complex hydraulic applications. Given its breadth of coverage, it addresses the needs and interests of practitioners, stakeholders, researchers and engineers alike.
This book presents a wide range of recent advances in hydraulics and water engineering. It contains four sections: hydraulics and open channel flow; hydrology, water resources management and hydroinformatics; maritime hydraulics; ecohydraulics and water quality management. World authorities such as Mike Abbot, I Nezu, A J Metha, M Garcia and P Y Julien have contributed to the book.
The book is a collection of extended papers which have been selected for presentation during the SIMHYDRO 2012 conference held in Sophia Antipolis in September 2012. The papers present the state of the art numerical simulation in domains such as (1) New trends in modelling for marine, river & urban hydraulics; (2) Stakeholders & practitioners of simulation; (3) 3D CFD & applications. All papers have been peer reviewed and by scientific committee members with report about quality, content and originality. The target audience for this book includes scientists, engineers and practitioners involved in the field of numerical modelling in the water sector: flood management, natural resources preservation, hydraulic machineries, and innovation in numerical methods, 3D developments and applications.
This volume contains six papers discussing coastal processes, and physical and numerical modeling.In the first paper, Svendsen and Putrevu give an extensive review on the state of understanding of surf-zone hydrodynamics, including subjects such as wave breaking, wave-induced currents, and instability of nearshore currents and infragravity waves. They point out that the most urgent need is to develop an adequate theory for wave breaking and broken waves in the surf zone.One of the methods for studying the complex coastal processes is to perform laboratory experiments. However, physical models are always plagued by scale and laboratory effects, because the coastal process involves many different length and time scales. In the second paper, Kamphuis presents a detailed discussion on the sources and implications of the scale and laboratory effects on physical modeling.The third and the fourth papers are two parts of the discussion on the mathematical modeling of the meso-tidal barrier island coasts. To understand the dynamics of coastal inlet systems, one can either rely on empirical knowledge and construct various forms of empirical and semi-empirical models (Part I), or develop a set of mathematical models based on the physical processes (Part II). Although these models do not provide the details of the dynamics, they give valuable knowledge of the equilibrium-state relationships. de Vriend and Ribberink give a detailed review on two models, Initial Sedimentation/Erosion models and Medium-Term Morphodynamic models. They have also presented many examples of applications.In the fifth paper, Houston gives a brief review on different methods to mitigate beach loss caused by storms or persistent long-term erosion. He then describes, in detail, the method of beach nourishment, which is also called a beach fill. This paper discusses the information that must be collected to design a beach fill and that should be monitored after the completion of the project.The last paper of this volume shifts our attention to the design of offshore structures, such as gravity structures, floating barges and tankers. Chakrabarti discusses the effects of the uniform and shear currents on fixed and floating structures.
Hydroinformatics addresses cross-disciplinary issues ranging from technological and sociological to more general environmental concerns, including an ethical perspective. It covers the application of information technology in the widest sense to problems of the aquatic environment.This two-volume publication contains about 250 high quality papers contributed by authors from over 50 countries. The proceedings present many exciting new findings in the emerging subjects, as well as their applications, such as: data mining, data assimilation, artificial neural networks, fuzzy logic, genetic algorithms and genetic programming, chaos theory and support vector machines, geographic information systems and virtual imaging, decision support and management systems, Internet-based technologies.This book provides an excellent reference to researchers, graduate students, practitioners, and all those interested in the field of hydroinformatics.
There has been an explosive growth of methods in recent years for learning (or estimating dependency) from data, where data refers to known samples that are combinations of inputs and corresponding outputs of a given physical system. The main subject addressed in this thesis is model induction from data for the simulation of hydrodynamic processes in the aquatic environment. Firstly, some currently popular artificial neural network architectures are introduced, and it is then argued that these devices can be regarded as domain knowledge incapsulators by applying the method to the generation of wave equations from hydraulic data and showing how the equations of numerical-hydraulic models can, in their turn, be recaptured using artificial neural networks. The book also demonstrates how artificial neural networks can be used to generate numerical operators on non-structured grids for the simulation of hydrodynamic processes in two-dimensional flow systems and a methodology has been derived for developing generic hydrodynamic models using artificial neural network. The book also highlights one other model induction technique, namely that of support vector machine, as an emerging new method with a potential to provide more robust models.
Hydraulic Structure, Equipment and Water Data Acquisition Systems is a component of Encyclopedia of Water Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Hydraulic structures occupied a vital role in the development of civilization from the earliest recorded history up to the present, and undoubtedly will do so in the future. Humanity in ancient times settled mostly near perennial rivers, nomadic people frequented oases and springs, and to augment these natural ephemeral supplies, established societies built primitive dams and dug wells. This 4-volume set contains several chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It carries state-of-the-art knowledge in the fields of Hydraulic Structure, Equipment and Water Data Acquisition Systems. In these volumes the historical origins, modern developments, and future perspectives in the field of water supply engineering are discussed. Various types of hydraulic structures, their associated equipment, and the various systems for collecting data are described. These four volumes are aimed at the following five major target audiences: University and College Students Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers, NGOs and GOs.