Download Free Advances In Hybridization Of Intelligent Methods Book in PDF and EPUB Free Download. You can read online Advances In Hybridization Of Intelligent Methods and write the review.

This book presents recent research on the hybridization of intelligent methods, which refers to combining methods to solve complex problems. It discusses hybrid approaches covering different areas of intelligent methods and technologies, such as neural networks, swarm intelligence, machine learning, reinforcement learning, deep learning, agent-based approaches, knowledge-based system and image processing. The book includes extended and revised versions of invited papers presented at the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2016), held in The Hague, Holland, in August 2016. The book is intended for researchers and practitioners from academia and industry interested in using hybrid methods for solving complex problems.
Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent. The Handbook of Research on Advanced Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
This carefully edited book combines symbolic and sub-symbolic techniques to construct more robust and reliable problem solving models. This volume focused on "Hybrid Artificial Intelligence Systems" contains a collection of papers that were presented at the 2nd International Workshop on Hybrid Artificial Intelligence Systems, held in 12 - 13 November, 2007, Salamanca, Spain.
This book presents the latest trends and approaches in artificial intelligence research and its application to intelligent systems. It discusses hybridization of algorithms, new trends in neural networks, optimisation algorithms and real-life issues related to the application of artificial methods. The book constitutes the second volume of the refereed proceedings of the Artificial Intelligence and Algorithms in Intelligent Systems of the 7th Computer Science On-line Conference 2018 (CSOC 2018), held online in April 2018.
This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The first volume includes 69 papers organized in topical sections on mathematical and theoretical methods in computational intelligence; learning and adaptation; bio-inspired systems and neuro-engineering; hybrid intelligent systems; applications of computational intelligence; new applications of brain-computer interfaces; optimization algorithms in graphic processing units; computing languages with bio-inspired devices and multi-agent systems; computational intelligence in multimedia processing; and biologically plausible spiking neural processing.
The Third International Workshop on Hybrid Artificial Intelligence Systems (HAIS 2008) presented the most recent developments in the dynamically expanding realm of symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques. Hybrid intelligent systems have become incre- ingly popular given their capabilities to handle a broad spectrum of real-world c- plex problems which come with inherent imprecision, uncertainty and vagueness, high-dimensionality, and non stationarity. These systems provide us with the oppor- nity to exploit existing domain knowledge as well as raw data to come up with prom- ing solutions in an effective manner. Being truly multidisciplinary, the series of HAIS workshops offers a unique research forum to present and discuss the latest theoretical advances and real-world applications in this exciting research field. This volume of Lecture Notes on Artificial Intelligence (LNAI) includes accepted papers presented at HAIS 2008 held in University of Burgos, Burgos, Spain, Sept- ber 2008 The global purpose of HAIS conferences has been to form a broad and interdis- plinary forum for hybrid artificial intelligence systems and associated learning pa- digms, which are playing increasingly important roles in a large number of application areas. Since its first edition in Brazil in 2006, HAIS has become an important forum for researchers working on fundamental and theoretical aspects of hybrid artificial intel- gence systems based on the use of agents and multiagent systems, bioinformatics and bio-inspired models, fuzzy systems, artificial vision, artificial neural networks, opti- zation models and alike.
Although recommendation systems have become a vital research area in the fields of cognitive science, approximation theory, information retrieval and management sciences, they still require improvements to make recommendation methods more effective and intelligent. Intelligent Techniques in Recommendation Systems: Contextual Advancements and New Methods is a comprehensive collection of research on the latest advancements of intelligence techniques and their application to recommendation systems and how this could improve this field of study.
HANDBOOK OF INTELLIGENT COMPUTING AND OPTIMIZATION FOR SUSTAINABLE DEVELOPMENT This book provides a comprehensive overview of the latest breakthroughs and recent progress in sustainable intelligent computing technologies, applications, and optimization techniques across various industries. Optimization has received enormous attention along with the rapidly increasing use of communication technology and the development of user-friendly software and artificial intelligence. In almost all human activities, there is a desire to deliver the highest possible results with the least amount of effort. Moreover, optimization is a very well-known area with a vast number of applications, from route finding problems to medical treatment, construction, finance, accounting, engineering, and maintenance schedules in plants. As far as optimization of real-world problems is concerned, understanding the nature of the problem and grouping it in a proper class may help the designer employ proper techniques which can solve the problem efficiently. Many intelligent optimization techniques can find optimal solutions without the use of objective function and are less prone to local conditions. The 41 chapters comprising the Handbook of Intelligent Computing and Optimization for Sustainable Development by subject specialists, represent diverse disciplines such as mathematics and computer science, electrical and electronics engineering, neuroscience and cognitive sciences, medicine, and social sciences, and provide the reader with an integrated understanding of the importance that intelligent computing has in the sustainable development of current societies. It discusses the emerging research exploring the theoretical and practical aspects of successfully implementing new and innovative intelligent techniques in a variety of sectors, including IoT, manufacturing, optimization, and healthcare. Audience It is a pivotal reference source for IT specialists, industry professionals, managers, executives, researchers, scientists, and engineers seeking current research in emerging perspectives in the field of artificial intelligence in the areas of Internet of Things, renewable energy, optimization, and smart cities.
This book reports on new theories and applications in the field of intelligent systems and computing. It covers cutting-edge computational and artificial intelligence methods, advances in computer vision, big data, cloud computing, and computation linguistics, as well as cyber-physical and intelligent information management systems. The respective chapters are based on selected papers presented at the workshop on intelligent systems and computing, held during the International Conference on Computer Science and Information Technologies, CSIT 2020, which was jointly organized on September 23-26, 2020, by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. Given its breadth of coverage, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and is sure to foster new discussions and collaborations among different groups.
This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.