Download Free Advances In High Temperature Chemistry 4 Book in PDF and EPUB Free Download. You can read online Advances In High Temperature Chemistry 4 and write the review.

Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as well as the studies of the sublimation mechanism of sodium chloride, cadmium sulfide, and gallium arsenide. The temperature and emissivity measurements in the thermal imaging technique, freezing and melting point measurements of metal oxides, and phase studies on binary oxide systems at higher temperatures with a solar furnace are also encompassed. High temperature chemists and solar researchers will find the book invaluable.
Advances in High Temperature Chemistry, Volume 3 reviews and evaluates some techniques in high temperature chemistry. Comprised of six chapters, this volume first discusses the principles concerned with high temperature chemistry. After introducing short-range ordering in crystals, this book shows how to interpret liquid alloy activity measurements. It also covers various techniques such as photoionization mass spectroscopy, photoelectron spectroscopy, and microwave spectroscopy. This book ends with a discussion on oxahalides and other transition elements. Researchers and high temperature chemists will find this book useful.
Progress in High Temperature Physics and Chemistry
Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in high temperature chemistry. This topic is followed by discussions on the thermochemical properties of some simple solids in terms of valence states of the metallic elements and of the electrons in metals, on anions, and in aqueous solutions. Other chapters are concerned with the stepwise bond dissociation energies in a number of polyvalent metal fluorides and the unique possibilities for chemical syntheses, which are available through high temperature species. The final chapters are devoted to the techniques, temperature ranges, and accuracy of high temperature calorimetry. These chapters also include surveys on the nature of thermal plasmas for high temperature chemistry. This book is of benefit to high temperature chemists and specialized engineers.
The book is concerned with understanding the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry and alloy composition. The focus is on designing (or selecting) alloy compositions which provide optimal resistance to attack by corrosive gases. . Emphasises quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities and alloy compositions. . Uses phase diagrams and diffusion paths to analyse and interpret scale structures and internal precipitation distributions . Provides a detailed examination of corrosion in industrial gases (water vapour effects, carburisation and metal dusting, sulphidation) . Text is well supported by numerous micrographs, phase diagrams and tabulations of relevant thermodynamic and kinetic data . Combines physical chemistry and materials science methodologies.
High Temperature Coatings, Second Edition, demonstrates how to counteract the thermal effects of rapid corrosion and degradation of exposed materials and equipment that can occur under high operating temperatures. This is the first true practical guide on the use of thermally protective coatings for high-temperature applications, including the latest developments in materials used for protective coatings. It covers the make-up and behavior of such materials under thermal stress and the methods used for applying them to specific types of substrates, as well as invaluable advice on inspection and repair of existing thermal coatings. With his long experience in the aerospace gas turbine industry, the author has compiled the very latest in coating materials and coating technologies, as well as hard-to-find guidance on maintaining and repairing thermal coatings, including appropriate inspection protocols. The book is supplemented with the latest reference information and additional support to help readers find more application- and industry-type coatings specifications and uses. - Offers an overview of the underlying fundamental concepts of thermally-protective coatings, including thermodynamics, energy kinetics, crystallography and equilibrium phases - Covers essential chemistry and physics of underlying substrates, including steels, nickel-iron alloys, nickel-cobalt alloys and titanium alloys - Provides detailed guidance on a wide variety of coating types, including those used against high temperature corrosion and oxidative degradation and thermal barrier coatings
Molten salts and fused media provide the key properties and the theory of molten salts, as well as aspects of fused salts chemistry, helping you generate new ideas and applications for fused salts.Molten Salts Chemistry: From Lab to Applications examines how the electrical and thermal properties of molten salts, and generally low vapour pressure are well adapted to high temperature chemistry, enabling fast reaction rates. It also explains how their ability to dissolve many inorganic compounds such as oxides, nitrides, carbides and other salts make molten salts ideal as solvents in electrometallurgy, metal coating, treatment of by-products and energy conversion.This book also reviews newer applications of molten salts including materials for energy storage such as carbon nano-particles for efficient super capacitors, high capacity molten salt batteries and for heat transport and storage in solar plants. In addition, owing to their high thermal stability, they are considered as ideal candidates for the development of safer nuclear reactors and for the treatment of nuclear waste, especially to separate actinides from lanthanides by electrorefining. - Explains the theory and properties of molten salts to help scientists understand these unique liquids - Provides an ideal introduction to this expanding field - Illustrated text with key real-life applications of molten salts in synthesis, energy, nuclear, and metal extraction
Developments in potato chemistry, including identification and use of the functional components of potatoes, genetic improvements and modifications that increase their suitability for food and non-food applications, the use of starch chemistry in non-food industry and methods of sensory and objective measurement have led to new and important uses for this crop. Advances in Potato Chemistry and Technology presents the most current information available in one convenient resource.The expert coverage includes details on findings related to potato composition, new methods of quality determination of potato tubers, genetic and agronomic improvements, use of specific potato cultivars and their starches, flours for specific food and non-food applications, and quality measurement methods for potato products. - Covers potato chemistry in detail, providing key understanding of the role of chemical compositions on emerging uses for specific food and non-food applications - Presents coverage of developing areas, related to potato production and processing including genetic modification of potatoes, laboratory and industry scale sophistication, and modern quality measurement techniques to help producers identify appropriate varieties based on anticipated use - Explores novel application uses of potatoes and potato by-products to help producers identify potential areas for development of potato variety and structure