Download Free Advances In Energy Systems And Technology Volume 2 Book in PDF and EPUB Free Download. You can read online Advances In Energy Systems And Technology Volume 2 and write the review.

This second edition to a popular first provides a comprehensive, fully updated treatment of advanced conventional power generation and cogeneration plants, as well as alternative energy technologies. Organized into two parts: Conventional Power Generation Technology and Renewable and Emerging Clean Energy Systems, the book covers the fundamentals, analysis, design, and practical aspects of advanced energy systems, thus supplying a strong theoretical background for highly efficient energy conversion. New and enhanced topics include: Large-scale solar thermal electric and photovoltaic (PV) plants Advanced supercritical and ultra-supercritical steam power generation technologies Advanced coal- and gas-fired power plants (PP) with high conversion efficiency and low environmental impact Hybrid/integrated (i.e., fossil fuel + REN) power generation technologies, such as integrated solar combined-cycle (ISCC) Clean energy technologies, including "clean coal," H2 and fuel cell, plus integrated power and cogeneration plants (i.e., conventional PP + fuel cell stacks) Emerging trends, including magnetohydrodynamic (MHD)-generator and controlled thermonuclear fusion reactor technologies with low/zero CO2 emissions Large capacity offshore and on-land wind farms, as well as other renewable (REN) power generation technologies using hydro, geothermal, ocean, and bio energy systems Containing over 50 solved examples, plus problem sets, full figures, appendices, references, and property data, this practical guide to modern energy technologies serves energy engineering students and professionals alike in design calculations of energy systems.
Advances in Energy Systems and Technology, Volume 4 covers articles about energy systems and technology. The book discusses articles about atmospheric carbon dioxide (CO2), including anthropogenic sources of CO2, the effects of increased atmospheric CO2 on climate, and the effects of climate changes and direct CO2 impacts. The text also describes automobile pollution control with regard to complex chemical and physical processes that take place during combustion in automobile engines and the reduction of the levels of pollution emitted by internal combustion engines. The statistical perspective on world oil resources, as well as the historical perspective on electricity and energy use and on the relationship of electricity to gross national product, is also considered. The book further explores the relationship between economic activity and energy use and uninterrupted trend toward increasing electrification in the United States. Professional workers in the field of energy systems and technology as well as those of university students at the graduate or advanced undergraduate level will find the book useful.
Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies. Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. Focuses on the progress and research trends in solar, wind, biomass, and hydropower and geothermal energy production and conversion Includes advanced techniques for the distribution, management, optimization, and storage of heat and energy using case studies
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
This book presents best selected research papers presented at Innovation in Sustainable Energy and Technology India (ISET 2020), organized by Energy Institute Bangalore (A unit of RGIPT, an Institute of National Importance), India, during 3–4 December 2020. The book covers various topics of sustainable energy and technologies which includes renewable energy (solar photovoltaic, solar thermal and CSP, biomass, wind energy, micro hydro power, hydrogen energy, geothermal energy, energy materials, energy storage, hybrid energy), smart energy systems (electrical vehicle, cybersecurity, charging infrastructures, IOT & AI, waste management, PHEV (CNG/EV) and mobility (smart grids, IOT & AI, energy-efficient buildings, mart agriculture).
Market: energy professionals including analysts, system engineers, mechanical engineers, and electrical engineers Problems and worked-out equations use SI units
This book presents select proceedings of International Conference on Energy, Material Sciences and Mechanical Engineering (EMSME) 2020, held at National Institute of Technology Delhi. Various topics covered in this book include clean materials, solar energy systems, wind energy systems, power optimization, grid integration of renewable energy, smart energy storage technologies, artificial intelligence in solar and wind system, analysis of clean energy material in environment, converter topology, modelling and simulation. This book will be useful for researchers and professionals working in the areas of solar material science, electrical engineering, and energy technologies.
Advances in Renewable Energies and Power Technologies: Volume 1: Solar and Wind Energies examines both the theoretical and practical elements of renewable energy sources, such as photovoltaics, solar, photothermal and wind energies. Yahyaoui and a team of expert contributors present the most up-to-date information and analysis on renewable energy generation technologies in this comprehensive resource. Covers the principles and methods of each technology, an analysis of their implementation, management and optimization, and related economic advantages and limitations. Features recent case studies and models of each technology. A valuable resource for anyone working in the renewable energy field or wanting to learn more about theoretical and technological aspects of the most recent inventions and research in the field. - Offers a comprehensive guide to the most advanced contemporary renewable power generation technologies written by a team of top experts - Discusses the energy optimization, control and limitations of each technology, as well as a detailed economic study of the associated costs of implementation and management - Includes global case studies and models to exemplify the technological possibilities and limitations of each power generation method
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice