Download Free Advances In Electric Power And Energy Systems Book in PDF and EPUB Free Download. You can read online Advances In Electric Power And Energy Systems and write the review.

A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial arenas. Short-run forecasting of electricity prices has become necessary for power generation unit schedule, since it is the basis of every maximization strategy. This book fills a gap in the literature on this increasingly important topic. Following an introductory chapter offering background information necessary for a full understanding of the forecasting issues covered, this book: Introduces advanced methods of time series forecasting, as well as neural networks Provides in-depth coverage of state-of-the-art power system load forecasting and electricity price forecasting Addresses river flow forecasting based on autonomous neural network models Deals with price forecasting in a competitive market Includes estimation of post-storm restoration times for electric power distribution systems Features contributions from world-renowned experts sharing their insights and expertise in a series of self-contained chapters Advances in Electric Power and Energy Systems is a valuable resource for practicing engineers, regulators, planners, and consultants working in or concerned with the electric power industry. It is also a must read for senior undergraduates, graduate students, and researchers involved in power system planning and operation.
Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics.
The papers presented in this volume address diverse challenges in energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids and from theoretical considerations to data provision concerns and applied case studies. The International Symposium on Energy System Optimization (ISESO) was held on November 9th and 10th 2015 at the Heidelberg Institute for Theoretical Studies (HITS) and was organized by HITS, Heidelberg University and Karlsruhe Institute of Technology.
In recent years, the development of advanced structures for providing sustainable energy has been a topic at the forefront of public and political conversation. Many are looking for advancements on pre-existing sources and new and viable energy options to maintain a modern lifestyle. The Handbook of Research on Power and Energy System Optimization is a critical scholarly resource that examines the usage of energy in relation to the perceived standard of living within a country and explores the importance of energy structure augmentation. Featuring coverage on a wide range of topics including energy management, micro-grid, and distribution generation, this publication is targeted towards researchers, academicians, and students seeking relevant research on the augmentation of current energy structures to support existing standards of living.
Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling helps readers develop their skills in modeling, simulating, and optimizing electric power systems. Carefully balancing theory and practice, it presents novel, cutting-edge developments in forecasting and scheduling. The focus is on understanding and solving pivotal problems in the management of electric power generation systems. Methods for Coping with Uncertainty and Risk in Electric Power Generation Outlining real-world problems, the book begins with an overview of electric power generation systems. Since the ability to cope with uncertainty and risk is crucial for power generating companies, the second part of the book examines the latest methods and models for self-scheduling, load forecasting, short-term electricity price forecasting, and wind power forecasting. Toward Optimal Coordination between Hydro, Thermal, and Wind Power Using case studies, the third part of the book investigates how to achieve the most favorable use of available energy sources. Chapters in this section discuss price-based scheduling for generating companies, optimal scheduling of a hydro producer, hydro-thermal coordination, unit commitment with wind generators, and optimal optimization of multigeneration systems. Written in a pedagogical style that will appeal to graduate students, the book also expands on research results that are useful for engineers and researchers. It presents the latest techniques in increasingly important areas of power system operations and planning.
This book presents select proceedings of Electric Power and Renewable Energy Conference 2020 (EPREC 2020). This book provides rigorous discussions, case studies, and recent developments in the emerging areas of the power system, especially, renewable energy conversion systems, distributed generations, microgrid, smart grid, HVDC & FACTS, power system protection, etc. The readers would be benefited in terms of enhancing their knowledge and skills in the domain areas. The book will be a valuable reference for beginners, researchers, and professionals interested in developments in the power system.
Electric Energy Systems, Second Edition provides an analysis of electric generation and transmission systems that addresses diverse regulatory issues. It includes fundamental background topics, such as load flow, short circuit analysis, and economic dispatch, as well as advanced topics, such as harmonic load flow, state estimation, voltage and frequency control, electromagnetic transients, etc. The new edition features updated material throughout the text and new sections throughout the chapters. It covers current issues in the industry, including renewable generation with associated control and scheduling problems, HVDC transmission, and use of synchrophasors (PMUs). The text explores more sophisticated protections and the new roles of demand, side management, etc. Written by internationally recognized specialists, the text contains a wide range of worked out examples along with numerous exercises and solutions to enhance understanding of the material. Features Integrates technical and economic analyses of electric energy systems. Covers HVDC transmission. Addresses renewable generation and the associated control and scheduling problems. Analyzes electricity markets, electromagnetic transients, and harmonic load flow. Features new sections and updated material throughout the text. Includes examples and solved problems.
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. - The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration - Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass - Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses - Case studies and examples demonstrate how novel systems and performance assessment methods function in practice
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
A clear explanation of the technology for producing and delivering electricity Electric Power Systems explains and illustrates how the electric grid works in a clear, straightforward style that makes highly technical material accessible. It begins with a thorough discussion of the underlying physical concepts of electricity, circuits, and complex power that serves as a foundation for more advanced material. Readers are then introduced to the main components of electric power systems, including generators, motors and other appliances, and transmission and distribution equipment such as power lines, transformers, and circuit breakers. The author explains how a whole power system is managed and coordinated, analyzed mathematically, and kept stable and reliable. Recognizing the economic and environmental implications of electric energy production and public concern over disruptions of service, this book exposes the challenges of producing and delivering electricity to help inform public policy decisions. Its discussions of complex concepts such as reactive power balance, load flow, and stability analysis, for example, offer deep insight into the complexity of electric grid operation and demonstrate how and why physics constrains economics and politics. Although this survival guide includes mathematical equations and formulas, it discusses their meaning in plain English and does not assume any prior familiarity with particular notations or technical jargon. Additional features include: * A glossary of symbols, units, abbreviations, and acronyms * Illustrations that help readers visualize processes and better understand complex concepts * Detailed analysis of a case study, including a Web reference to the case, enabling readers to test the consequences of manipulating various parameters With its clear discussion of how electric grids work, Electric Power Systems is appropriate for a broad readership of professionals, undergraduate and graduate students, government agency managers, environmental advocates, and consumers.