Download Free Advances In Dynamics Optimization And Computation Book in PDF and EPUB Free Download. You can read online Advances In Dynamics Optimization And Computation and write the review.

This book presents a collection of papers on recent advances in problems concerning dynamics, optimal control and optimization. In many chapters, computational techniques play a central role. Set-oriented techniques feature prominently throughout the book, yielding state-of-the-art algorithms for computing general invariant sets, constructing globally optimal controllers and solving multi-objective optimization problems.
The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.
Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly,allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support.
The articles that comprise this distinguished annual volume for the Advances in Mechanics and Mathematics series have been written in honor of Gilbert Strang, a world renowned mathematician and exceptional person. Written by leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines and investigates recent developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, theoretical and engineering mechanics, large scale computation, quantum algorithms and computation, and information theory.
Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .
This book presents a range of dynamic programming (DP) techniques applied to the optimization of dynamical systems.
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.
The concepts and techniques presented in this volume originated from the fields of dynamics, statistics, control theory, computer science and informatics, and are applied to novel and innovative real-world applications. Over the past few decades, the use of dynamic systems, control theory, computing, data mining, machine learning and simulation has gained the attention of numerous researchers from all over the world. Admirable scientific projects using both model-free and model-based methods coevolved at today’s research centers and are introduced in conferences around the world, yielding new scientific advances and helping to solve important real-world problems. One important area of progress is the bioeconomy, where advances in the life sciences are used to produce new products in a sustainable and clean manner. In this book, scientists from all over the world share their latest insights and important findings in the field. The majority of the contributed papers for this volume were written by participants of the 3rd International Conference on Dynamics, Games and Science, DGSIII, held at the University of Porto in February 2014, and at the Berkeley Bioeconomy Conference at the University of California at Berkeley in March 2014. The aim of the project of this book “Modeling, Dynamics, Optimization and Bioeconomics II” follows the same aim as its companion piece, “Modeling, Dynamics, Optimization and Bioeconomics I,” namely, the exploration of emerging and cutting-edge theories and methods for modeling, optimization, dynamics and bioeconomy.
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
This book provides a series of systematic theoretical results and numerical solution algorithms for dynamic optimization problems of switched systems within infinite-dimensional inequality path constraints. Dynamic optimization of path-constrained switched systems is a challenging task due to the complexity from seeking the best combinatorial optimization among the system input, switch times and switching sequences. Meanwhile, to ensure safety and guarantee product quality, path constraints are required to be rigorously satisfied (i.e., at an infinite number of time points) within a finite number of iterations. Several novel methodologies are presented by using dynamic optimization and semi-infinite programming techniques. The core advantages of our new approaches lie in two folds: i) The system input, switch times and the switching sequence can be optimized simultaneously. ii) The proposed algorithms terminate within finite iterations while coming with a certification of feasibility for the path constraints. In this book, first, we provide brief surveys on dynamic optimization of path-constrained systems and switched systems. For switched systems with a fixed switching sequence, we propose a bi-level algorithm, in which the input is optimized at the inner level, and the switch times are updated at the outer level by using the gradient information of the optimal value function calculated at the optimal input. We then propose an efficient single-level algorithm by optimizing the input and switch times simultaneously, which greatly reduces the number of nonlinear programs and the computational burden. For switched systems with free switching sequences, we propose a solution framework for dynamic optimization of path-constrained switched systems by employing the variant 2 of generalized Benders decomposition technique. In this framework, we adopt two different system formulations in the primal and master problem construction and explicitly characterize the switching sequences by introducing a binary variable. Finally, we propose a multi-objective dynamic optimization algorithm for locating approximated local Pareto solutions and quantitatively analyze the approximation optimality of the obtained solutions. This book provides a unified framework of dynamic optimization of path-constrained switched systems. It can therefore serve as a useful book for researchers and graduate students who are interested in knowing the state of the art of dynamic optimization of switched systems, as well as recent advances in path-constrained optimization problems. It is a useful source of up-to-date optimization methods and algorithms for researchers who study switched systems and graduate students of control theory and control engineering. In addition, it is also a useful source for engineers who work in the control and optimization fields such as robotics, chemical engineering and industrial processes.