Download Free Advances In Distributed Parameter Systems Book in PDF and EPUB Free Download. You can read online Advances In Distributed Parameter Systems and write the review.

The proposed book presents recent breakthroughs for the control of distributed parameter systems and follows on from a workshop devoted to this topic. It introduces new and unified visions of the challenging control problems raised by distributed parameter systems. The book collects contributions written by prominent international experts in the control community, addressing a wide variety of topics. It spans the full range from theoretical research to practical implementation and follows three traverse axes: emerging ideas in terms of control strategies (energy shaping, prediction-based control, numerical control, input saturation), theoretical concepts for interconnected systems (with potential non-linear actuation dynamics), advanced applications (cable-operated elevators, traffic networks), and numerical aspects. Cutting-edge experts in the field contributed in this volume, making it a valuable reference source for control practitioners, graduate students, and scientists researching practical and theoretical solutions to the challenging problems raised by distributed parameter systems.
A thorough mathematical analysis of controllability problems with a detailed investigation of methods for solving them numerically.
This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.
Port-Hamiltonian Systems Theory: An Introductory Overview provides a concise and easily accessible description of the foundations underpinning the subject and emphasizes novel developments in the field, which will be of interest to a broad range of researchers.
This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.
This is the first comprehensive book on the AIMD algorithm, the most widely used method for allocating a limited resource among competing agents without centralized control. The authors offer a new approach that is based on positive switched linear systems. It is used to develop most of the main results found in the book, and fundamental results on stochastic switched nonnegative and consensus systems are derived to obtain these results. The original and best known application of the algorithm is in the context of congestion control and resource allocation on the Internet, and readers will find details of several variants of the algorithm in order of increasing complexity, including deterministic, random, linear, and nonlinear versions. In each case, stability and convergence results are derived based on unifying principles. Basic and fundamental properties of the algorithm are described, examples are used to illustrate the richness of the resulting dynamical systems, and applications are provided to show how the algorithm can be used in the context of smart cities, intelligent transportation systems, and the smart grid.
This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. It focuses on the most recent LPV identification methods for both discrete-time and continuous-time models--
Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book’s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.
An examination of progress in mathematical control theory applications. It provides analyses of the influence and relationship of nonlinear partial differential equations to control systems and contains state-of-the-art reviews, including presentations from a conference co-sponsored by the National Science Foundation, the Institute of Mathematics a