Download Free Advances In Computational And Stochastic Optimization Logic Programming And Heuristic Search Book in PDF and EPUB Free Download. You can read online Advances In Computational And Stochastic Optimization Logic Programming And Heuristic Search and write the review.

Computer Science and Operations Research continue to have a synergistic relationship and this book - as a part of the Operations Research and Computer Science Interface Series - sits squarely in the center of the confluence of these two technical research communities. The research presented in the volume is evidence of the expanding frontiers of these two intersecting disciplines and provides researchers and practitioners with new work in the areas of logic programming, stochastic optimization, heuristic search and post-solution analysis for integer programs. The chapter topics span the spectrum of application level. Some of the chapters are highly applied and others represent work in which the application potential is only beginning. In addition, each chapter contains expository material and reviews of the literature designed to enhance the participation of the reader in this expanding interface.
This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems.
The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.
This book combines wireless telematics systems with dynamic vehicle routing algorithms and vehicle-positioning systems to produce a telematics-enabled information system that can be employed by commercial fleet operators for real-time monitoring, control, and planning. The book further presents a Messaging And Fleet Monitoring System and a Dynamic Planning System (DPS) that provides real-time decision support considering the current state of the transportation system.
This book focuses on real time management of distribution systems, integrating the latest results in system design, algorithm development and system implementation to capture the state-of-the art research and application trends. The book important topics such as goods dispatching, couriers, rescue and repair services, taxi cab services, and more. The book includes real-life case studies that describe the solution to actual distribution problems by combining systemic and algorithmic approaches.
Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of the cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state of the art in the interface between OR/MS and CS/AI and of the high-caliber research being conducted by members of the INFORMS Computing Society.
Metaheuristics: Progress as Real Problem Solvers is a peer-reviewed volume of eighteen current, cutting-edge papers by leading researchers in the field. Included are an invited paper by F. Glover and G. Kochenberger, which discusses the concept of Metaheuristic agent processes, and a tutorial paper by M.G.C. Resende and C.C. Ribeiro discussing GRASP with path-relinking. Other papers discuss problem-solving approaches to timetabling, automated planograms, elevators, space allocation, shift design, cutting stock, flexible shop scheduling, colorectal cancer and cartography. A final group of methodology papers clarify various aspects of Metaheuristics from the computational view point.
Simulation Approaches in Transportation Analysis: Recent Advances and Challenges presents the latest developments in transport simulation, including dynamic network simulation and micro-simulation of people’s movement in an urban area. It offers a collection of the major simulation models that are now in use throughout the world; it illustrates each model in detail, examines potential problems, and points to directions for future development. The reader will be able to understand the functioning, applicability, and usefulness of advanced transport simulation models. The material in this book will be of wide use to graduate students and practitioners as well as researchers in the transportation engineering and planning fields.
Optimization problems in practice are diverse and evolve over time, giving rise to - quirements both for ready-to-use optimization software packages and for optimization software libraries, which provide more or less adaptable building blocks for app- cation-specific software systems. In order to apply optimization methods to a new type of problem, corresponding models and algorithms have to be “coded” so that they are accessible to a computer. One way to achieve this step is the use of a mod- ing language. Such modeling systems provide an excellent interface between models and solvers, but only for a limited range of model types (in some cases, for example, linear) due, in part, to limitations imposed by the solvers. Furthermore, while m- eling systems especially for heuristic search are an active research topic, it is still an open question as to whether such an approach may be generally successful. Modeling languages treat the solvers as a “black box” with numerous controls. Due to variations, for example, with respect to the pursued objective or specific problem properties, - dressing real-world problems often requires special purpose methods. Thus, we are faced with the difficulty of efficiently adapting and applying appropriate methods to these problems. Optimization software libraries are intended to make it relatively easy and cost effective to incorporate advanced planning methods in application-specific software systems. A general classification provides a distinction between callable packages, nume- cal libraries, and component libraries.
This book provides successful implementations of metaheuristic methods for neural network training. It is the first book to achieve this objective. Moreover, the basic principles and fundamental ideas given in the book will allow the readers to create successful training methods on their own. Overall, the book's aim is to provide a broad coverage of the concepts, methods, and tools of the important area of ANNs within the realm of continuous optimization.