Download Free Advances In Coal Spectroscopy Book in PDF and EPUB Free Download. You can read online Advances In Coal Spectroscopy and write the review.

The past decade has witnessed major advances in our understanding of the chemical composition, structure, and reactivity of the complex organic-rich fossil matter known as "coal. " Nevertheless, important scientific questions concerning molecular weight distributions, degree of crosslinking, typical duster sizes, type of interconnecting bridges, the possible role of a "mobile phase," and the nature of organic sulfur forms remain topics of heated debate. Moreover, there appears to be a notable lack of consensus regarding the overall direction and goals of structural elucidation work. Is it worthwhile to study whole coal samples, or should we separate out the various, more or less well-defined, maceral and mineral constituents before attempting to describe the structural and compositional features of coal at the molecular Ievel? Second, should there be more emphasis on key structural features and average statistical parameters, or is it necessary to identify individual chemical structures in considerable detail? From the developments of the past decade it is clear that advanced spectroscopic techniques are playing an increasingly important role in resolving difficult questions with regard to the chemical structure and composition of coal. Moreover, it has become equally clear that no single spectroscopic approach can provide all the answers but multiple techniques need to be used in a highly integrated and synergistic manner.
Updating content from the author’s 2001 book Coal Desulfurization, this new title focuses on CO2 sequestration and utilization. It includes information on the theory and practical approaches to CO2 capture and recent advances in the use of sequestered CO2. Avoiding these pollutants requires either forgetting about the 250 billion tons of coal reserves the United States possesses or capturing and utilizing the pollutants in a profitable and environmentally responsible fashion. The book covers postcombustion and precombustion capture approaches for coal, and postcombustion capture can be generalized to many other fuels. Recent practical implementations at full-scale power facilities around the world are discussed. The book covers sequestering CO2 via underground, oceanic, biological, and other long-term CO2 storage methods. It also includes recent advances in utilizing CO2 for enhanced oil recovery, advances in storage with depleted oil and gas reservoirs and deep saline aquifers, and additional topics. The book also examines specific applications of pure CO2 and covers chemical conversion of CO2 to useful compounds. It answers questions like "Can we create methanol from coal?" or "Can we create ethanol from coal?" It is found that methanol and ethanol cannot be sustainably produced from coal power alone. However, oxalic acid can be created at a much lower energy cost than methanol or ethanol. Oxalic acid can be used to extract rare earths, which are not currently produced anywhere in the United States, but are typically concentrated in coal ash. Aimed at researchers and industry professionals in chemical, environmental, and energy engineering, this book provides insight and inspiration into capturing CO2 not merely as a response to regulatory pressure and climate change but as an inherently profitable and valuable venture.