Download Free Advances In Biomedical Polymers Book in PDF and EPUB Free Download. You can read online Advances In Biomedical Polymers and write the review.

Polymers have generated considerable interest in a large number of technologically important fields such as human healthcare systems. Polymers represent a very important domain of materials and have become an integral part of day to day human life. Polymers exist in nature; they have been and continue to be an integral part of the universe. This book is intended for scientists and researchers to use in their research or in their professional practice in polymer chemistry and its biomedical applications. Multiple biological, synthetic and hybrid polymers are used for multiple medical applications. A wide range of different polymers are available, and they have the advantage to be tunable in physical, chemical and biological properties and in a wide range to match the requirements of specific applications. This book gives a brief overview about the introduction and developments of polymers for different applications. The biomedical polymers comprise not only bulk materials, but also coatings and pharmaceutical nano-carriers for drugs. The surface modification of the inorganic nanoparticles with a physically or chemically end-tethered polymer chain has been employed to overcome the problems associated with the polymers. Chemically attached polymer chains not only stabilize the inorganic nanoparticles, but also lead to photosensitivity, bioactivity, biocompatibility and pharmacological properties in the composites. Polymer encapsulated silica nanocomposites (mesoporous) have potential applications in different fields, such as optics, bio-catalysis, microelectronics bone tissue engineering, coatings cosmetics, inks, agriculture, drug release systems, diagnoses, enzyme imaging, temperature-responsive materials, and thermosensitive vehicles for cellular imaging. Polymer grafted nanosized particles are known to have excellent properties such as good dispersion ability in solvents and polymer matrices. Polymer-based controlled drug delivery systems have some specific advantages, such as improved efficiency and reduced toxicity. The incorporation of a thermoresponsive polymer layer often enhances protein absorption and specific biomolecular tagging through hydrogen bonding. As a result, the nanocomposite gets cleared from the body at a faster rate (blood residence becomes low). This book is composed of fourteen edited chapters; it is intended for scientists and researchers to use in their research or in their professional practice in polymer chemistry and its biomedical applications.
Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. - Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials - Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. - 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future
Advances in Biomedical Polymers and Composites: Materials and Applications is a comprehensive guide to polymers and polymer composites for biomedical applications, bringing together detailed information on their preparation, properties, cutting-edge technologies, innovative materials and key application areas. Sections introduce polymers and composites in biomedical applications and cover characterization techniques, preparation and properties of composites and gel-based systems. Innovative technologies and instruments used in the fabrication of polymer composites for biomedical applications are then presented in detail, including 3D bioprinting, 4D printing, electrospinning, stimuli-responsive polymers and quantum dots. This is a valuable resource for anyone looking to gain a broader understanding of polymers and composites for biomedical applications. In addition, it is ideal for readers who want to conduct interdisciplinary research or explore new avenues for research and development. - Provides broad, systematic and detailed coverage of preparation methods, properties, technologies, structures and applications - Explores the state-of-the-art in biomedical polymers, including gene delivery, oleogels, bigels, 3D bioprinting, 4D printing and antiviral materials - Offers analysis and comparison of experimental data on physical properties and explains environmental, ethical and medical guidelines
This book is derived from a Symposium held at the 190th National American Chemical Society Meeting, which was held in the Fall of 1985, in Chicago, and was sponsored by the Division of Polymeric Materials: Science & Engineering. This Symposium was, in turn, a follow-up on an earlier one held in Houston, TX, in the Spring of 1980, which was pub lished as the book ·Biomedical and Dental Applications of Polymers· [Plenum Press, New York, 1981]. In that earlier book, our opening Preface passage quoted King David, ·1 will praise Thee; for I am fearfully and made . •• • (Psalm 139:14). As we noted five years ago, sickness wonderfully of many types does occur in our wonderfully made bodies, but much human suffering can be aided by biomedical polymers. That earlier book con sidered much of the fantastic progress that had been made in biomedical polymers during the previous quarter century and brought many of these topics up to date. That Symposium, and book, noted that much help was available for the varied afflictions and problems that sometimes beset, and upset, our God-given bodies, and the promise of new and important advances was held out as a shining ray of hope amidst the gloom of sickness and affliction. The present volume is an update on the advances that have occurred since the 1981 book and sets the stage for even greater advances in the future.
Advanced Functional Polymers for Biomedical Applications presents novel techniques for the preparation and characterization of functionalized polymers, enabling researchers, scientists and engineers to understand and utilize their enhanced functionality in a range of cutting-edge biomedical applications. - Provides systematic coverage of the major types of functional polymers, discussing their properties, preparation techniques and potential applications - Presents new synthetic approaches alongside the very latest polymer processing and characterization methods - Unlocks the potential of functional polymers to support ground-breaking techniques for drug and gene delivery, diagnostics, tissue engineering and regenerative medicine
The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.
Nanostructured Polymer Composites for Biomedical Applications addresses the challenges researchers face regarding the creation of nanostructured polymer composites that not only have superior performance and mechanical properties, but also have acceptable biological function. This book discusses current efforts to meet this challenge by discussing the multidisciplinary nature of nanostructured polymer composite biomaterials from various fields, including materials science, polymer science, biomedical engineering and biomedicine. This compilation of existing knowledge will lead to the generation of new terminology and definitions across individual disciplines. As such, this book will help researchers and engineers develop new products and devices for use in effective medical treatment. - Summarizes the most recent strategies to develop nanostructured polymer composite biomaterials for biomedicine - Outlines the major preparation and characterization techniques for a range of polymer nanocomposites used in biomedicine - Explores the design of new types of nanostructured polymer composites for applications in drug delivery, tissue engineering, gene therapy and bone replacement
A review of the latest research on biomedical polymers, this book discusses natural, synthetic, biodegradable and non bio-degradable polymers and their applications. Chapters discuss polymeric scaffolds for tissue engineering and drug delivery systems, the use of polymers in cell encapsulation, their role as replacement materials for heart valves and arteries, and their applications in joint replacement. The book also discusses the use of polymers in biosensor applications. Edited by an expert team of reasearchers and containing contributions from pioneers throughout the field, the book is an essential reference for scientists and all those developing and using this important group of biomaterials.
Materials for Biomedical Engineering: Thermoset and Thermoplastic Polymers presents the newest and most interesting approaches to intelligent polymer engineering in both current and future progress in biomedical sciences. Particular emphasis is placed on the properties needed for each selected polymer and how to increase their biomedical potential in varying applications, such as drug delivery and tissue engineering. These materials are intended for use in diagnoses, therapy and prophylaxis, but are also relatable to other biomedical related applications, such as sensors. Recent developments and future perspectives regarding their use in biomedicine are discussed in detail, making this book an ideal source on the topic. - Highlights the most well-known applications of thermoset and thermoplastic polymers in biological and biomedical engineering - Presents novel opportunities and ideas for developing or improving technologies in materials for companies, those in biomedical industries, and others - Features at least 50% of references from the last 2-3 years
Biopolymers such as cellulose, lignin, starch, pectin, chitin, xylan, etc. are copiously available in nature in the form of plant biomass. They have been used for various applications such as biofuels, nanobiocomposites, biomedicine, etc. Biopolymers have unique antimicrobial properties, and are thus used for food packaging. The field of biomaterials is interdisciplinary and includes chemistry, biology and medicine. There are different ways to apply biopolymers for the benefit of our society. Although natural polymers are cheap and available in large quantities, it is still difficult to utilise their potentials. Still, there are challenges to develop new methodologies for the efficient and economic utilisation of these biopolymers. Consequently, the modification of these materials is the focus of recent scientific research. These modifications improve the various properties of biopolymers required for specific applications. Modifications improve heat, moisture resistance, solubility in water, sustainability, flexibility, compatibility, biodegradability, etc. Biopolymers modified by blending shows considerable improvement in the impact resistance of brittle polymers. Biopolymer systems containing particles with one or more dimensions in the nanometer scale are called bionanocomposites, a special class of materials possessing unique thermal stability, fire resistance, mechanical and optical properties. Bionanocomposites have been effectively used in controlled drug delivery, food packaging, etc.