Download Free Advances In Artificial Intelligence And Its Applications Book in PDF and EPUB Free Download. You can read online Advances In Artificial Intelligence And Its Applications and write the review.

After decades of basic research and more promises than impressive applications, artificial intelligence (AI) is starting to deliver benefits. A convergence of advances is motivating this new surge of AI development and applications. Computer capability as it has evolved from high throughput and high performance computing systems is increasing. AI models and operations research adaptations are becoming more mature, and the world is breeding big data not only from the web and social media but also from the Internet of Things. Organizations around the world have been realizing that there are substantial performance gains and increases in productivity for the use of AI and predictive analytics techniques. Their use is bringing a new era of breakthrough innovation and opportunities. This book, compiles research insights and applications in diverse areas such as manufacturing, supply chain management, pricing, autonomous vehicles, healthcare, ecommerce, and aeronautics. Using classical and advanced tools in AI such as deep learning, particle swarm optimization, support vector machines and genetic programming among others. This is a very distinctive book which discusses important applications using a variety of paradigms from AI and outlines some of the research to be performed. The work supersedes similar books that do not cover as diversified a set of sophisticated applications. The authors present a comprehensive and articulated view of recent developments, identifies the applications gap by quoting from the experience of experts, and details suggested research areas. Artificial Intelligence: Advances in Research and Applications guides the reader through an intuitive understanding of the methodologies and tools for building and modeling intelligent systems. The book's coverage is broad, starting with clustering techniques with unsupervised ensemble learning, where the optimal combination strategy of individual partitions is robust in comparison to the selection of an algorithmic clustering pool. This is followed by a case in a parallel-distributed simulator using deep learning for its configuration. Chapter Three presents a case for autonomous vehicles. Chapter Four discusses the novel use of genetic algorithms with support vector machines. Chapters Five through Thirteen focus on the applications. The book discusses how the use of AI can allow for productivity development and other benefits not just for businesses, but also for economies. Finally, you can find an interesting investigation of the transhuman dimension of AI.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
This book presents selected peer-reviewed papers from the International Conference on Artificial Intelligence and Data Engineering (AIDE 2019). The topics covered are broadly divided into four groups: artificial intelligence, machine vision and robotics, ambient intelligence, and data engineering. The book discusses recent technological advances in the emerging fields of artificial intelligence, machine learning, robotics, virtual reality, augmented reality, bioinformatics, intelligent systems, cognitive systems, computational intelligence, neural networks, evolutionary computation, speech processing, Internet of Things, big data challenges, data mining, information retrieval, and natural language processing. Given its scope, this book can be useful for students, researchers, and professionals interested in the growing applications of artificial intelligence and data engineering.
Examines the creation of software programs displaying broad, deep, human-style general intelligence. This work features papers presented at the 2006 AGIRI (Artificial General Intelligence Research Institute) workshop, which illustrates that it is a fit and proper subject for serious science and engineering exploration.
"This book explores artificial intelligence finding it cannot simply display the high-level behaviours of an expert but must exhibit some of the low level behaviours common to human existence"--Provided by publisher.
Artificial intelligence is a branch of computer science and a discipline in the study of machine intelligence, that is, developing intelligent machines or intelligent systems imitating, extending and augmenting human intelligence through artificial means and techniques to realize intelligent behavior.Advanced Artificial Intelligence consists of 16 chapters. The content of the book is novel, reflects the research updates in this field, and especially summarizes the author's scientific efforts over many years. The book discusses the methods and key technology from theory, algorithm, system and applications related to artificial intelligence. This book can be regarded as a textbook for senior students or graduate students in the information field and related tertiary specialities. It is also suitable as a reference book for relevant scientific and technical personnel.
This book constitutes the proceedings of the 31st Australasian Joint Conference on Artificial Intelligence, AI 2018, held in Wellington, New Zealand, in December 2018. The 50 full and 26 short papers presented in this volume were carefully reviewed and selected from 125 submissions. The paper were organized in topical sections named: agents, games and robotics; AI applications and innovations; computer vision; constraints and search; evolutionary computation; knowledge representation and reasoning; machine learning and data mining; planning and scheduling; and text mining and NLP.
This volume is the first in a series which deals with the challenge of AI issues, gives updates of AI methods and applications, and promotes high quality new ideas, techniques and methodologies in AI. This volume contains articles by 38 specialists in various AI subfields covering theoretical and application issues.
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering