Download Free Advances In Anisotropy Book in PDF and EPUB Free Download. You can read online Advances In Anisotropy and write the review.

After a brief introduction into crystal plasticity,the fun- damentals of crystallographic textures and plastic anisotro- py, a main topic of this book, are outlined. A large chapter is devoted to formability testing both for bulk metal and sheet metal forming. For the first time testing methods for plastic anisotropy of round bars and tubes are included. A profound survey is given of literature about yield criteria for anisotropic materials up to most recent developments and the calculation of forming limits of anisotropic sheet me- tal. Other chapters are concerned with properties of workpieces after metal forming as well as the fundamentals of the theory of plasticity and finite element simulation of metal forming processes. The book is completed by a collection of tables of international standards for formability testing and of flow curves of metals which are most commonly used in metal forming. It is addressed both to university and industrial readers.
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
A successful book covering an important area of materials science, now available in paperback.
Mechanical engineering, an engineering discipline forged and shaped by the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others . The Mechanical Engineering Series features graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of c- centrations important to mechanical engineering graduate education and research . We are fortunate to have a distinguished roster of consulting editors on the ad- sory board, each an expert in one of the areas of concentration . The names of the consulting editors are listed on the facing page of this volume . The areas of conc- tration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics , mechanics of materials, processing, production systems, thermal science, and tribology .
Selected, peer reviewed papers from the 2013 International Forum on Materials Analysis and Testing Technology (IFMATT 2013), December 9-10, 2013, Qingdao, China
Following the breakthrough in the last decade in identifying the key parameters for time and depth imaging in anisotropic media and developing practical methodologies for estimating them from seismic data, Seismic Signatures and Analysis of Reflection Data in Anisotropic Media primarily focuses on the far reaching exploration benefits of anisotropic processing. This volume provides the first comprehensive description of reflection seismic signatures and processing methods in anisotropic media. It identifies the key parameters for time and depth imaging in transversely isotropic media and describes practical methodologies for estimating them from seismic data. Also, it contains a thorough discussion of the important issues of uniqueness and stability of seismic velocity analysis in the presence of anisotropy. The book contains a complete description of anisotropic imaging methods, from the theoretical background to algorithms to implementation issues. Numerous applications to synthetic and field data illustrate the improvements achieved by the anisotropic processing and the possibility of using the estimated anisotropic parameters in lithology discrimination. Focuses on the far reaching exploration benefits of anisotropic processing First comprehensive description of reflection seismic signatures and processing methods in anisotropic media
Contact mechanics is an active research area with deep theoretical and numerical roots. The links between nonsmooth analysis and optimization with mechanics have been investigated intensively during the last decades, especially in Europe. The study of complementarity problems, variational -, quasivariational- and hemivariational inequalities arising in contact mechanics and beyond is a hot topic for interdisciplinary research and cooperation. The needs of industry for robust solution algorithms suitable for large scale applications and the regular updates of the respective elements in major commercial computational mechanics codes, demonstrate that this interaction is not restricted to the academic environment. The contributions of this book have been selected from the participants of the CMIS 2009 international conference which took place in Crete and continued a successful series of specialized contact mechanics conferences.
All rock masses are seismically anisotropic, but we generally ignore this in our seismic acquisition, processing, and interpretation. The anisotropy nonetheless does affect our data, in ways that limit the effectiveness with which we can use it, as long as we ignore it. This book, produced for use with the fifth SEG/EAGE Distinguished Instructor Short Course, helps us understand why this inconsistency between reality and practice has been so successful in the past and why it will be less successful in the future as we acquire better seismic data (especially including vector seismic data) and correspondingly higher expectations of it. This book helps us understand how we can modify our practice to more fully realize the potential inherent in our data through algorithms which recognize the fact of seismic anisotropy.
Volume is indexed by Thomson Reuters CPCI-S (WoS). Advanced Materials and Processing are important areas of research in Engineering Science and Technology, which have to focus on bridging the critical gap between researchers and engineers in order to shape the new world. Advanced Materials and Processing play an increasingly important role in the global economy and in daily life. Researchers and engineers strive to develop new devices and processes, using mathematical and analytical tools, in order to create technologies for a rapidly expanding range of materials and manufacturing processes. A large proportion of the present papers addressed current scientific research and provided solutions to industrial problems; thereby creating an environment of mutual interest to industry and academia. The papers are grouped into 10 chapters: 1. Forming Processes, 2. Casting, Joining and Related Processes, 3. Materials, 4. Materials Removal Processes, 5. High Energy Beam Removal Process, 6. Precision Engineering and Nano-Technology, 7. Surface Engineering, 8. Computer-Aided Engineering, 9. Green Manufacturing and Management, 10. Others. This comprehensive coverage will be much appreciated by readers.
Over the last few years, anisotropy has become a "hot topic" in seismic exploration and seismology. It is now recognised that geological media deviate more or less from isotropy. This has consequences for acquisition, processing and interpretation of seismic data and also helps determine the cause of anisotropy and adds to our knowledge concerning the structure of the medium at scales beyond the resolution of the seismic method. This volume addresses the theoretical foundations of wave propagation in anisotropic media at an easily accessible level. The treatment is not restricted to exploration seismology. The book commences with fundamental material and covers the description of wave propagation in anisotropic conditions by means of slowness and wave surfaces. It continues to explore the theory of elasticity, the interaction of elasticity and material symmetry and conditions imposed by the stability of the medium. Wave propagation in general anisotropic solids are discussed referring in particular to singular and longitudinal directions. Slowness and wave surfaces in transversely isotropic media and in the planes of symmetry of orthorhombic media is presented and then moves on to wave propagation in orthorhombic media by means of "squared slowness surfaces". The latter part of the book deals with layer-induced anisotropy showing how a particular internal structure of a medium leads to anisotropy and how much of this structure can be recovered by "inversion" of the modelling algorithm. A few fundamental aspects of exploration seismology are also discussed. The final chapter discusses how concepts which were developed by Kelvin, but only recently understood, can be utilised to determine the symmetry class and orientation of an elastic medium.