Download Free Advancement In Sensing Technology Book in PDF and EPUB Free Download. You can read online Advancement In Sensing Technology and write the review.

The book presents the recent advancements in the area of sensors and sensing technology, specifically in environmental monitoring, structural health monitoring, dielectric, magnetic, electrochemical, ultrasonic, microfluidic, flow, surface acoustic wave, gas, cloud computing and bio-medical. This book will be useful to a variety of readers, namely, Master and PhD degree students, researchers, practitioners, working on sensors and sensing technology. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.
This book provides an overview of modern sensing technologies and reflects the remarkable advances that have been made in the field of intelligent and smart sensors, environmental monitoring, health monitoring, and many other sensing and monitoring contexts in today’s world. It addresses a broad range of aspects, from human health monitoring to the monitoring of environmental conditions, from wireless sensor networks and the Internet of Things to structural health monitoring. Given its breadth of scope, the book will benefit researchers, practitioners, technologists and graduate students involved in the monitoring of systems within the human body, functions and activities, healthcare technologies and services, the environment, etc.
Sensors are integral to modern living and are found in a huge number of applications in science, engineering and technology thus it is critical for scientists and technologists to understand the physical principles behind sensor types as well as their characteristics, applications, and how they can be suitably employed in sensor technologies. Whilst there exists a vast literature on the physics and characteristics of traditional sensors, this book provides a broad overview of the range of sensor technologies and attendant topics needed to optimise and utilise these devices in the modern world. Not only reviewing sensors by classification, the book encompasses the physics, design characteristics, simulation and interface electronics, and it includes case studies, future challenges and several other aspects of wider sensor technology to provide an overview of modern sensors and their applications. The broad scope will appeal to industrial and academic researchers and application engineers, especially those developing and implementing real-time hardware implementations employing smart sensors for emerging applications. Key Features Features a broad review of sensor types, including MEMS, wearable and smart sensors Presents application of modern sensors and emerging research directions Incorporates case studies Reviews wider associated technologies such as simulation, materials and interface electronics Interdisciplinary appeal making the text suitable for industrial and academic researchers as well as application engineers
Advances in materials science and engineering have paved the way for the development of new and more capable sensors. Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical issues in such a way as to expedite the consideration of new and novel sensor materials. It enables a multidisciplinary approach for identifying opportunities and making realistic assessments of technical risk and could be used to guide relevant research and development in sensor technologies.
Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.
This collection reviews key advances in sensor technology, including developments in proximal and remote sensing techniques to measure and monitor crop health, weeds and diseases.
The aim of this Printed Edition of Special Issue entitled "Recent Advancements in Radar Imaging and Sensing Technology” was to gather the latest research results in the area of modern radar technology using active and/or radar imaging sensing techniques in different applications, including both military use and a broad spectrum of civilian applications. As a result, the 19 papers that have been published highlighted a variety of topics related to modern radar imaging and microwave sensing technology. The sequence of articles included in the Printed Edition of Special Issue dealt with wide aspects of different applications of radar imaging and sensing technology in the area of topics including high-resolution radar imaging, novel Synthetic Apertura Radar (SAR) and Inverse SAR (ISAR) imaging techniques, passive radar imaging technology, modern civilian applications of using radar technology for sensing, multiply-input multiply-output (MIMO) SAR imaging, tomography imaging, among others.
Exciting new developments are enabling sensors to go beyond the realm of simple sensing of movement or capture of images to deliver information such as location in a built environment, the sense of touch, and the presence of chemicals. These sensors unlock the potential for smarter systems, allowing machines to interact with the world around them in more intelligent and sophisticated ways. Featuring contributions from authors working at the leading edge of sensor technology, Technologies for Smart Sensors and Sensor Fusion showcases the latest advancements in sensors with biotechnology, medical science, chemical detection, environmental monitoring, automotive, and industrial applications. This valuable reference describes the increasingly varied number of sensors that can be integrated into arrays, and examines the growing availability and computational power of communication devices that support the algorithms needed to reduce the raw sensor data from multiple sensors and convert it into the information needed by the sensor array to enable rapid transmission of the results to the required point. Using both SI and US units, the text: Provides a fundamental and analytical understanding of the underlying technology for smart sensors Discusses groundbreaking software and sensor systems as well as key issues surrounding sensor fusion Exemplifies the richness and diversity of development work in the world of smart sensors and sensor fusion Offering fresh insight into the sensors of the future, Technologies for Smart Sensors and Sensor Fusion not only exposes readers to trends but also inspires innovation in smart sensor and sensor system development.
Advances in Mapping from Remote Sensor Imagery: Techniques and Applications reviews some of the latest developments in remote sensing and information extraction techniques applicable to topographic and thematic mapping. Providing an interdisciplinary perspective, leading experts from around the world have contributed chapters examining state-of-the-art techniques as well as widely used methods. The book covers a broad range of topics including photogrammetric mapping and LiDAR remote sensing for generating high quality topographic products, global digital elevation models, current methods for shoreline mapping, and the identification and classification of residential buildings. Contributors also showcase cutting-edge developments for environmental and ecological mapping, including assessment of urbanization patterns, mapping vegetation cover, monitoring invasive species, and mapping marine oil spills—crucial for monitoring this significant environmental hazard. The authors exemplify the information presented in this text with case studies from around the world. Examples include: Envisat/ERS-2 images used to generate digital elevation models over northern Alaska In situ radiometric observations and MERIS images employed to retrieve chlorophyll a concentration in inland waters in Australia ERS-1/2 SAR images utilized to map spatiotemporal deformation in the southwestern United States Aerospace sensors and related information extraction techniques that support various mapping applications have recently garnered more attention due to the advances in remote sensing theories and technologies. This book brings together top researchers in the field, providing a state-of-the-art review of some of the latest advancements in remote sensing and mapping technologies.
Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.