Download Free Advanced Wastewater Treatment Technologies For The Removal Of Pharmaceutically Active Compounds Book in PDF and EPUB Free Download. You can read online Advanced Wastewater Treatment Technologies For The Removal Of Pharmaceutically Active Compounds and write the review.

This book reports on the treatment of waters and wastewaters with contaminants of emerging concern such as pharmaceutically active compounds. It shows how to prevent the contamination of the environment with such pollutants in the content of effluents. This book reviews various physico-chemical and biological methods that have been developed in order to deal with the polluted effluents. It also evaluates the already developed technologies regarding the sustainability criteria. The chapters discuss technical aspects and put the spotlight on the sustainability aspects of the water and wastewater treatment technologies.
This book reviews water treatment technologies for the removal of pharmaceutically active compounds (PhACs). It provides the reader with an overview of state-of-the-art techniques and recent efforts to develop more sustainable approaches. After nearly two decades of research into the presence and impact of PhACs in the environment, they remain one of the hottest topics in the fields of environmental chemistry, toxicology and engineering. Accordingly, intensive research efforts are currently being devoted to water treatment technologies that can reduce the presence of these emerging contaminants in water bodies. This book examines various types of contaminated water from industry, hospitals and urban wastewater. It provides the reader with a range of potential solutions for water treatment and reuse, and addresses the advancement of analytical tools for evaluating the performance and efficiency of treatment technologies.
Pharmaceuticals and Personal Care Products Waste Management and Treatment Technology: Emerging Contaminants and Micro Pollutants provides the tools and techniques for identifying these contaminates and applying the most effective technology for their remediation, recovery and treatment. The consumption of pharmaceuticals and personal care products (PPCPs) has grown significantly over the last 35 years, thus increasing their potential risk to the environment. As PPCPs are very difficult to detect and remove using conventional wastewater treatment methods, this book provides solutions to a growing problem. - Includes sampling, analytical and characterization methods and technology for detecting PPCPs in the environment - Provides advanced treatment and disposal technologies for the removal of PPCPs from wastewater, surface water, landfills and septic systems - Examines the pathways of PPCPs into the environment
The Life-Cycle of Pharmaceuticals in the Environment identifies pathways of entry of pharmaceuticals into the environment, beginning with the role of global prescribing and disposal practices. The book then discusses typical levels of common pharmaceuticals and how they can be determined in natural waters such as raw and treated sewage, and in potable water. In addition, sections examine methods currently available to degrade pharmaceuticals in natural waters and some of their ecotoxicological impacts, along with future considerations and the growing concept of product stewardship. - Encompasses the full lifecycle of common pharmaceuticals, from prescription and dispensing practices to their occurrence in a range of different types of natural waters and their environmental impact - Explores the role of the healthcare system and its affect on users - Beneficial for environmental engineers involved in the design and operation of appropriate degradation technologies of the pharmaceutical prescription and disposal practices
The book on Physico-Chemical Treatment of Wastewater and Resource Recovery provides an efficient and low-cost solution for remediation of wastewater. This book focuses on physico-chemical treatment via advanced oxidation process, adsorption, its management and recovery of valuable chemicals. It discusses treatment and recovery process for the range of pollutants including BTX, PCB, PCDDs, proteins, phenols, antibiotics, complex organic compounds and metals. The occurrence of persistent pollutants poses deleterious effects on human and environmental health. Simple solutions for recovery of valuable chemicals and water during physico-chemical treatment of wastewater are discussed extensively. This book provides necessary knowledge and experimental studies on emerging physico-chemical processes for reducing water pollution and resource recovery.
Pharmaceutical wastewater is now a major concern due to the improper legislation around the globe and the poor implementation of existing laws. This book covers the various aspects of pharmaceutical sources, treatment technologies, and the harmful effect on the natural environment. The book will also highlight the concept of the 3Rs (reduce, reuse and recycle) as applied to the treatment and resource recovery systems for pharmaceutical treatment. The different innovative technologies will deal with reducing the energy requirements, the physical space requirements and impacts of treatment plants . Some case studies are included in order to fully understand the practical aspects of the treatment and modelling.
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution—air, water, soil, and noise. Because pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for “zero discharge” can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi?ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the last two questions above. The traditional approach of applying tried-and-true solutions to speci?c pollution problems has been a major contributing factor to the success of environmental en- neering, and has accounted in large measure for the establishment of a “methodology of pollution control. ” However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.
The book presents new materials and methods for waste water treatments; including advanced oxidation processes, membrane technologies, detection and removal of heavy metals and organic compounds, and the use of nanomaterials, low cost adsorbents and bio flocculants. Keywords: Wastewater Treatment, Organic Molecule Degradation, Bio Flocculants, Coagulants, Pyrene, Pharmaceutical Compounds, Photocatalytic Degradation, Nanocrystalline Titanium Dioxide, Arsenic Removal, Membrane Technology, Activated Charcoal, Adsorbent Derived from Egg Shells, Degradation of Polycyclic Aromatic Hydrocarbons, Colorimetric Analysis, Luminescence, Spectroscopy, Atomic Absorption, Mass Spectrometric and Biosensor Based Techniques.
This book reviews water treatment technologies for the removal of pharmaceutically active compounds (PhACs). It provides the reader with an overview of state-of-the-art techniques and recent efforts to develop more sustainable approaches. After nearly two decades of research into the presence and impact of PhACs in the environment, they remain one of the hottest topics in the fields of environmental chemistry, toxicology and engineering. Accordingly, intensive research efforts are currently being devoted to water treatment technologies that can reduce the presence of these emerging contaminants in water bodies. This book examines various types of contaminated water from industry, hospitals and urban wastewater. It provides the reader with a range of potential solutions for water treatment and reuse, and addresses the advancement of analytical tools for evaluating the performance and efficiency of treatment technologies.