Download Free Advanced Unsaturated Soil Mechanics Book in PDF and EPUB Free Download. You can read online Advanced Unsaturated Soil Mechanics and write the review.

Analytical and comprehensive, this state-of-the-art book, examines the mechanics and engineering of unsaturated soils, as well as explaining the laboratory and field testing and research that are the logical basis of this modern approach to safe construction in these hazardous geomaterials; putting them into a logical framework for civil engineerin
The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.
The field of experimental unsaturated soil mechanics has grown considerably over the last decade. In the laboratory and in the field, innovative techniques have been introduced into mechanical, hydraulic, and geo-environmental testing. Normally, this information is widely dispersed throughout journals and conference proceedings and it is often difficult to identify suitable equipment and instrumentation for research or professional purposes. In this volume, however, the authors bring together the latest research in laboratory and field testing techniques, and the equipment employed, and examine the current state-of-the-art in a forum devoted solely to experimental unsaturated soil mechanics. The papers published in the proceedings were peer-reviewed by internationally-recognized researchers. The topics tackled by the papers include suction measurement, suction control, mechanical and hydraulic laboratory testing, geo-environmental testing, and field-testing.
Unsaturated Soil Mechanics is the first book to provide a comprehensive introduction to the fundamental principles of unsaturated soil mechanics. * Offers extensive sample problems with an accompanying solutions manual. * Brings together the rapid advances in research in unsaturated soil mechanics in one focused volume. * Covers advances in effective stress and suction and hydraulic conductivity measurement.
The principles and concepts for unsaturated soils are developed as extensions of saturated soils. Addresses problems where soils have a matric suction or where pore-water pressure is negative. Covers theory, measurement and use of the fundamental properties of unsaturated soils--permeability, shear strength and volume change. Includes a significant amount of case studies.
Soil is fundamentally a multi-phase material – consisting of solid particles, water and air. In soil mechanics and geotechnical engineering it is widely treated as an elastic, elastoplastic or visco-elastoplastic material, and consequently regarded as a continuum body. However, this book explores an alternative approach, considering soil as a multi-phase and discrete material and applying basic Newtonian mechanics rather than analytical mechanics. It applies microscopic models to the solid phase and fluid phases, and then introduces probability theory and statistics to derive average physical quantities which correspond to the soil‘s macroscopic physical properties such as void ratio and water content. This book is particularly focused on the mechanical behaviour of dry, partially saturated and full saturated sandy soil, as much of the physicochemical microscopic characteristic of clayey soil is still not clear. It explores the inter-particle forces at the point of contact of soil particles and the resultant inter-particle stresses, instead of the total stress and effective stress which are studied in mainstream soil mechanics. Deformation and strength behaviour, soil-water characteristic curves, and permeability coefficients of water and air are then derived simply from grain size distribution, soil particle density, void ratio and water content. A useful reference for consultants, professional engineers, researchers and public sector organisations involved in unsaturated soil tests. Advanced undergraduate and postgraduate students on Unsaturated Soil Mechanics courses will also find it a valuable text to study.
Unsaturated soil is a three-phase material that is ubiquitous on the Earth’s surface and exhibits complex behaviour, which becomes more complex in response to the Earth’s changing climate and increasing engineering activities. This is because the former affects its moisture and temperature conditions significantly and the latter governs its stress state and suction condition. This book is designed to meet the increasing challenges of climate change and engineering activities by covering the mechanics and engineering of unsaturated soil in a logical manner. It comprises four major parts: Water retention and flow characteristics Shear strength and stiffness at various temperatures State-dependent elasto-plastic constitutive modelling Field monitoring and engineering applications This second edition uniquely covers fundamental topics on unsaturated soil that are not covered in other similar books, including: the state- dependency of soil- water retention behaviour and water permeability functions, such as dependence on engineering activities small strain stiffness considering the influence of wetting- drying cycles and recent suction history, such as that due to climate change suction effects on dilatancy and peak shear strength cyclic thermal effects on soil behaviour state- dependent elastoplastic constitutive modelling of monotonic and cyclic behaviour engineering applications such as the South-to-North Water Transfer Project; an earthen landfill cover system devoid of geomembrane in the Xiaping landfill, Shenzhen; and a 15-m-deep multi- propped excavation in Tianjin, China
Written by a leader on the subject, Introduction to Geotechnical Engineering is first introductory geotechnical engineering textbook to cover both saturated and unsaturated soil mechanics. Destined to become the next leading text in the field, this book presents a new approach to teaching the subject, based on fundamentals of unsaturated soils, and extending the description of applications of soil mechanics to a wide variety of topics. This groundbreaking work features a number of topics typically left out of undergraduate geotechnical courses.
This is a collection of articles from the Asian conference UNSAT-ASIA 2000, covering topics such as: historical developments; numerical modelling; suction measurement techniques; permeability and flow; mass transport; and engineering applications.