Download Free Advanced Transport Protocols For Next Generation Heterogeneous Wireless Network Architectures Book in PDF and EPUB Free Download. You can read online Advanced Transport Protocols For Next Generation Heterogeneous Wireless Network Architectures and write the review.

The current diversity of transport services, as well as the complexity resulting from the deployment of specific transport protocols or mechanisms over the different services provided by heterogeneous networks, demand a novel design of the transport layer. Moreover, current and future applications will only be able to take advantage of the most adapted and available transport services if they are able to interact (i.e. discover, compose, deploy and adapt) efficiently with this advanced transport layer. The work presented in this book proposes a model-driven methodology and a service-oriented approach aimed at designing the mechanisms, functions, protocols and services of the next generation transport layer. The first part of this book presents the state of the art of transport protocols and introduces a model-driven methodology and an ontology semantic model implementation aimed at designing next generation transport protocols. The second part presents the UML-based design of a component-based transport protocol. An extension to this protocol based on service-component and service-oriented architectures is also presented. The third part presents various model-driven adaptive strategies aimed at managing the behavioral and structural adaptation of next generation autonomic transport protocols. The fourth and final part presents the design of a transport layer based on component-oriented and service-oriented approaches and integrating the autonomic computing paradigm guided by the semantic dimension provided by ontologies.
"This book presents state-of-the-art research, developments, and integration activities in combined platforms of heterogeneous wireless networks"--Provided by publisher.
Emerging wireless networks are characterized by increased heterogeneity in wireless access technologies as well as increased peer-to-peer communication among wireless hosts. The heterogeneity among wireless access interfaces mainly exists because of the fact that different wireless technologies deliver different performance trade-offs. Further, more and more infrastructure-less wireless networks such as ad-hoc networks are emerging to address several application scenarios including military and disaster recovery. These infrastructure-less wireless networks are characterized by the peer-to-peer communication model. In this thesis, we propose transport protocols that tackle the challenges that arise due to the above-mentioned properties of state-of-the-art wireless data networks. The main contributions of this work are as follows: 1. We determine the ideal nature and granularity of transport adaptation for efficient operation in heterogeneous wireless data networks by performing comprehensive experimental analysis. We then design and implement a runtime adaptive transport framework, *TP, which accommodates the capabilities of the ideal transport adaptation solution. 2. We prove that conversational transport protocols are not efficient under peer-to-peer wireless data networks. We then design and implement NCTP which is a non-conversational transport protocol.
This book constitutes the refereed proceedings of the 7th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking, NEW2AN 2007. The 39 revised full papers presented were carefully reviewed and selected from a total of 113 submissions. The papers are organized in topical sections on teletraffic, traffic characterization and modeling, 3G/UMTS, sensor networks, WLAN, QoS, MANETs, lower layer techniques, PAN technologies, and TCP.
This book constitutes the refereed proceedings of the 8th International Conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking, NEW2AN 2008, held in St. Petersburg, Russia in September 3-5, 2008 in conjunction with the First ruSMART 2008. The 21 revised full papers presented were carefully reviewed and selected from a total of 60 submissions. The NEW2AN papers are organized in topical sections on wireless networks, multi-hop wireless networks, cross-layer design, teletraffic theory, multimedia communications, heterogeneous networks, network security. The ruSMART papers start with three keynote talks followed by seven articles on Smart Spaces.
Market_Desc: · Engineers specializing in wireless and mobile systems and product development· Students Special Features: · Author has high profile in the professional engineering community with extensive exposure through his journal writings, chairing, and conference presentations· All systems have been tested; review questions (and solutions) at the end of each chapter· This follow-on book covers 3G (1st book covered 2G) and shows how the all-IP core network can be developed and how applications can be created· Includes coverage of VoIP (Voice over Internet Protocol) and SIP (Session Initiation Protocol), the topic of another best-selling Wiley engineering book About The Book: This completely new book skips all radio aspects and focuses on the emerging all-IP core network and applications instead. Broadband wireless networks based on B3G and 4G have been intensively studied in the literature. On the other hand, the all-IP core network and applications that utilize broadband networks are seldom addressed. This book describes the mobile core network protocols and applications based on the 3GPP all-IP core network architecture. The book shows how the all-IP core network can be developed and how applications can be created.
Today's professionals are constantly striving to create sensor technology and systems with lower cost and higher efficiency. Miniaturization and standardization have become critical drivers for cost reduction in the design and development process, giving rise to a new era of smart sensors and actuators. These devices contain more components, but normally provide significant cost savings due to wider applicability and mass production. This first-of-its-kind resource presents methods for cost optimization of smart microsystems to help you select highly cost-efficient implementation variants. Written by leading experts, the book offers detailed coverage of the key topics that you need to understand for your work in the field, such as methods for cost estimation, holistic design optimization, a methodology for a cost-driven design, and applied cost optimization. This practical book focuses on fundamental cost influences rather than absolute numbers, helping you appreciate relative values which reflect the competitive advantage of the various design implementations. Moreover, you find specific recommendations on which cost-reduction methods will be most advantageous in varying situations. This forward-looking volume provides keen insight into the underlying factors which drive the current economics and determine future trends of smart microsystems.
Today's Internet is very different from what it was intended to be forty years back. Its capacity has increased by orders of magnitude and the last mile access medium has transitioned from wired to wireless communication technologies. Yet the architecture of the Internet has not fundamentally changed, the same Internet protocol stack remains the vital core of the network. The assumptions made in the development of the Internet protocols were based on wired links and a limited set of applications. Most of these assumptions do not hold for the new types of applications running on wireless links. The layered-siloed architecture of the Internet has maintained a high level of abstraction that made it possible to adapt to new link types (such as optical networks, WiFi, cellular, satellite, etc.) and support new applications (such as realtime multimedia communication and video streaming). As cellular and other wireles networks take their place as the ubiquitous link layers of the future, wireless resources will become scarcer than ever. On the software side of the world, it is crucial to make the best use of the available resources. Unfortunately, combining the new applications and link layers with the current architecture results in poor application performance and inefficient link layer management. In this dissertation, we focus on the transport layer which provides the abstraction interface between the link and the application. We argue that a fresh look at the existing transport layer solutions is necessary to fully utilize the capabilities of emerging link-layer technologies and enhance the services provided to new types of applications. We present two solutions to address the interaction of the transport layer with both the link and application layers. Our first solution, Link-Coupled TCP, uses explicit cross-layer communication to allow applications to explicitly configure the desired trade-off between link utilization and queueing delay. By leveraging the architecture of emerging 5th Generation (5G) networks, it allows concurrent flows of applications with heterogeneous requirements to coexist without interfering with one another and without lowering the overall utilization of the wireless link. Our second solution, Application-Aware TCP, uses implicit cross-layer communication to identify the type of traffic generated by the application. It adjusts the congestion control parameters of the transport layer in order to optimize the user's quality of experience. Application-Aware TCP improves the performance of web browsing and adaptive video streaming when competing with bulk transfer traffic without negatively impacting bulk transfer traffic on the long run. Evaluating new solutions in realistic scenarios requires reliable tools that cover the different components and layers of the network. Network emulation provides enough flexibility by implementing a fully contained software replica of one of the network layers which can be tuned to act like its real counterpart under different conditions. For the scope of our solutions, we focus on three components: the wireless devices, the physical RF medium, and the wired portion of the network. We propose a set of guidelines for performing reliable experiments using the existing network emulation tools in Linux. We also present a wireless network testbed for accurately and reliably emulating the physical RF medium.