Download Free Advanced Topics On Cellular Self Organizing Nets And Chaotic Nonlinear Dynamics To Model And Control Complex Systems Book in PDF and EPUB Free Download. You can read online Advanced Topics On Cellular Self Organizing Nets And Chaotic Nonlinear Dynamics To Model And Control Complex Systems and write the review.

This book focuses on the research topics investigated during the three-year research project funded by the Italian Ministero dell'Istruzione, dell'Universite e della Ricerca (MIUR: Ministry of Education, University and Research) under the FIRB project RBNE01CW3M. With the aim of introducing newer perspectives of the research on complexity, the final results of the project are presented after a general introduction to the subject. The book is intended to provide researchers, PhD students, and people involved in research projects in companies with the basic fundamentals of complex systems and the advanced project results recently obtained.
This book focuses on the research topics investigated during the three-year research project funded by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR: Ministry of Education, University and Research) under the FIRB project RBNE01CW3M. With the aim of introducing newer perspectives of the research on complexity, the final results of the project are presented after a general introduction to the subject. The book is intended to provide researchers, PhD students, and people involved in research projects in companies with the basic fundamentals of complex systems and the advanced project results recently obtained./a
In this book, leading researchers present their current work in the challenging area of chaos control in nonlinear circuits and systems, with emphasis on practical methodologies, system design techniques and applications. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this area. The scope and aim of this book are to bridge the gap between chaos control methods and circuits and systems. It is an ideal starting point for anyone who needs a fundamental understanding of controlling chaos in nonlinear circuits and systems.
This book aims to propose the implementation and application of Fractional Order Systems (FOS). It is well known that FOS can be utilized in control applications and systems modeling, and their effectiveness has been proven in many theoretical works and simulation routines. A further and mandatory step for FOS real world utilization is their hardware implementation and applications on real systems modeling. With this viewpoint, introductory chapters are included on the definition of stability region of Fractional Order PID Controller and Chaotic FOS, followed by the practical implementation based on Microcontroller, Field Programmable Gate Array, Field Programmable Analog Array and Switched Capacitor. Another section is dedicated to FO modeling of Ionic Polymeric Metal Composite (IPMC). This new material will have applications in robotics, aerospace and biomedicine.
Annotation This text introduces cellular automata from a rigorous nonlinear dynamics perspective. It supplies the missing link between nonlinear differential and difference equations to discrete symbolic analysis. It provides an analysis, and classification of the empirical results presented in Wolfram's 'New Kind of Science'.
Volume III continues the author's quest for developing a pedagogical, self-contained, yet rigorous analytical theory of 1-D cellular automata via a nonlinear dynamics perspective. Using carefully conceived and illuminating color graphics, the global dynamical behaviors of the 50 (out of 256) local rules that have not yet been covered in Volumes I and II are exposed via their stunningly revealing basin tree diagrams. The Bernoulli στ-shift dynamics discovered in Volume II is generalized to hold for all 50 (or 18 globally equivalent) local rules via complex and hyper Bernoulli wave dynamics. Explicit global state transition formulas derived for rules 60, 90, 105, and 150 reveal a new scale-free phenomenon. The most surprising new result unveiled in this volume is the “Isle of Eden” found hidden in most (almost 90%) of the 256 local rules. Readers are challenged to hunt for long-period, isolated Isles of Eden. These are rare gems waiting to be discovered.
This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory ? or the flow ? may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.
"This book aims to provide mathematical analyses of nonlinear differential equations, which have proved pivotal to understanding many phenomena in physics, chemistry and biology. Topics of focus are autocatalysis and dynamics of molecular evolution, relaxation oscillations, deterministic chaos, reaction diffusion driven chemical pattern formation, solitons and neuron dynamics. Included is a discussion of processes from the viewpoints of reversibility, reflected by conservative classical mechanics, and irreversibility introduced by the dissipative role of diffusion. Each chapter presents the subject matter from the point of one or a few key equations, whose properties and consequences are amplified by approximate analytic solutions that are developed to support graphical display of exact computer solutions."--back cover.
Robust chaos is defined by the absence of periodic windows and coexisting attractors in some neighborhoods in the parameter space of a dynamical system. This unique book explores the definition, sources, and roles of robust chaos. The book is written in a reasonably self-contained manner and aims to provide students and researchers with the necessary understanding of the subject. Most of the known results, experiments, and conjectures about chaos in general and about robust chaos in particular are collected here in a pedagogical form. Many examples of dynamical systems, ranging from purely mathematical to natural and social processes displaying robust chaos, are discussed in detail. At the end of each chapter is a set of exercises and open problems (more than 260 in the whole book) intended to reinforce the ideas and provide additional experiences for both readers and researchers in nonlinear science in general, and chaos theory in particular.
This book is based on research on the rigorous proof of chaos and bifurcations in 2-D quadratic maps, especially the invertible case such as the Hnon map, and in 3-D ODE's, especially piecewise linear systems such as the Chua's circuit. In addition, the book covers some recent works in the field of general 2-D quadratic maps, especially their classification into equivalence classes, and finding regions for chaos, hyperchaos, and non-chaos in the space of bifurcation parameters. Following the main introduction to the rigorous tools used to prove chaos and bifurcations in the two representative systems, is the study of the invertible case of the 2-D quadratic map, where previous works are oriented toward Hnon mapping. 2-D quadratic maps are then classified into 30 maps with well-known formulas. Two proofs on the regions for chaos, hyperchaos, and non-chaos in the space of the bifurcation parameters are presented using a technique based on the second-derivative test and bounds for Lyapunov exponents. Also included is the proof of chaos in the piecewise linear Chua's system using two methods, the first of which is based on the construction of Poincar map, and the second is based on a computer-assisted proof. Finally, a rigorous analysis is provided on the bifurcational phenomena in the piecewise linear Chua's system using both an analytical 2-D mapping and a 1-D approximated Poincar mapping in addition to other analytical methods.