Download Free Advanced Topics In Linear Algebra Book in PDF and EPUB Free Download. You can read online Advanced Topics In Linear Algebra and write the review.

This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.
The Weyr matrix canonical form is a largely unknown cousin of the Jordan canonical form. Discovered by Eduard Weyr in 1885, the Weyr form outperforms the Jordan form in a number of mathematical situations, yet it remains somewhat of a mystery, even to many who are skilled in linear algebra. Written in an engaging style, this book presents various advanced topics in linear algebra linked through the Weyr form. Kevin O'Meara, John Clark, and Charles Vinsonhaler develop the Weyr form from scratch and include an algorithm for computing it. A fascinating duality exists between the Weyr form and the Jordan form. Developing an understanding of both forms will allow students and researchers to exploit the mathematical capabilities of each in varying situations. Weaving together ideas and applications from various mathematical disciplines, Advanced Topics in Linear Algebra is much more than a derivation of the Weyr form. It presents novel applications of linear algebra, such as matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry, with the latter two having topical connections to phylogenetic invariants in biomathematics and multivariate interpolation. Among the related mathematical disciplines from which the book draws ideas are commutative and noncommutative ring theory, module theory, field theory, topology, and algebraic geometry. Numerous examples and current open problems are included, increasing the book's utility as a graduate text or as a reference for mathematicians and researchers in linear algebra.
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
Advanced Linear Algebra features a student-friendly approach to the theory of linear algebra. The author’s emphasis on vector spaces over general fields, with corresponding current applications, sets the book apart. He focuses on finite fields and complex numbers, and discusses matrix algebra over these fields. The text then proceeds to cover vector spaces in depth. Also discussed are standard topics in linear algebra including linear transformations, Jordan canonical form, inner product spaces, spectral theory, and, as supplementary topics, dual spaces, quotient spaces, and tensor products. Written in clear and concise language, the text sticks to the development of linear algebra without excessively addressing applications. A unique chapter on "How to Use Linear Algebra" is offered after the theory is presented. In addition, students are given pointers on how to start a research project. The proofs are clear and complete and the exercises are well designed. In addition, full solutions are included for almost all exercises.
Designed for advanced undergraduate and beginning graduate students in linear or abstract algebra, Advanced Linear Algebra covers theoretical aspects of the subject, along with examples, computations, and proofs. It explores a variety of advanced topics in linear algebra that highlight the rich interconnections of the subject to geometry, algebra, analysis, combinatorics, numerical computation, and many other areas of mathematics. The book’s 20 chapters are grouped into six main areas: algebraic structures, matrices, structured matrices, geometric aspects of linear algebra, modules, and multilinear algebra. The level of abstraction gradually increases as students proceed through the text, moving from matrices to vector spaces to modules. Each chapter consists of a mathematical vignette devoted to the development of one specific topic. Some chapters look at introductory material from a sophisticated or abstract viewpoint while others provide elementary expositions of more theoretical concepts. Several chapters offer unusual perspectives or novel treatments of standard results. Unlike similar advanced mathematical texts, this one minimizes the dependence of each chapter on material found in previous chapters so that students may immediately turn to the relevant chapter without first wading through pages of earlier material to access the necessary algebraic background and theorems. Chapter summaries contain a structured list of the principal definitions and results. End-of-chapter exercises aid students in digesting the material. Students are encouraged to use a computer algebra system to help solve computationally intensive exercises.
Advanced Linear Algebra focuses on vector spaces and the maps between them that preserve their structure (linear transformations). It starts with familiar concepts and then slowly builds to deeper results. Along with including many exercises and examples, each section reviews what students need to know before studying the material. The book first introduces vector spaces over fields as well as the fundamental concepts of linear combinations, span of vectors, linear independence, basis, and dimension. After covering linear transformations, it discusses the algebra of polynomials with coefficients in a field, concentrating on results that are consequences of the division algorithm. The author then develops the whole structure theory of a linear operator on a finite dimensional vector space from a collection of some simple results. He also explores the entire range of topics associated with inner product spaces, from the Gram–Schmidt process to the spectral theorems for normal and self-adjoint operators on an inner product space. The text goes on to rigorously describe the trace and determinant of linear operators and square matrices. The final two chapters focus on bilinear forms and tensor products and related material. Designed for advanced undergraduate and beginning graduate students, this textbook shows students the beauty of linear algebra. It also prepares them for further study in mathematics.
A thorough development of a topic at the core of mathematics, ideal for graduate students and professional mathematicians.
This book presents original studies on the leading edge of linear algebra. Each chapter has been carefully selected in an attempt to present substantial research results across a broad spectrum. The main goal of Chapter One is to define and investigate the restricted generalized inverses corresponding to minimization of constrained quadratic form. As stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A review of the most interesting properties of the Projective Equivalence and the Extended Hermite Equivalence classes is presented in the chapter. New determinantal representations of generalized inverse matrices based on their limit representations are introduced in Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer's rules for the least squares solution with the minimum norm and for the Drazin inverse solution of singular linear systems have been obtained in the chapter. In Chapter Four, a very interesting application of linear algebra of commutative rings to systems theory, is explored. Chapter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of triangular matrices (tables) is introduced. The main "characters" of the chapter are special triangular tables (which will be called triangular matrices) and their functions paradeterminants and parapermanents. The aim of Chapter Seven is to present the latest developments in iterative methods for solving linear matrix equations. The problems of existence of common eigenvectors and simultaneous triangularization of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two approaches to define a noncommutative determinant (a determinant of a matrix with noncommutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example of how the methods of linear algebra are used in natural sciences, particularly in chemistry. In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix, all columns add to zero, all the diagonal elements are non-positive and all the other matrix entries are non-negative. As a result of this particular structure, the Gershgorin Circles Theorem can be applied to show that all the eigenvalues are negative or zero.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.