Download Free Advanced Thermal Design Of Electronic Equipment Book in PDF and EPUB Free Download. You can read online Advanced Thermal Design Of Electronic Equipment and write the review.

With today's high density, high performance electronic systems, packaging and more specifically thermal engineering has become the critical factor that limits on-time product introduction and reliability in the field. This book serves as a reference for engineers who must predict the thermal performance of a company's latest product as well as the technicians who must quickly solve the problem of an overheating chip in a product that is already on the shelves.
The field of electronic packaging continues to grow at an amazing rate. To be successful in this field requires analytical skills, a foundation in mechanical engineering, and access to the latest developments in the electronics field. The emphasis for each project that the electronic packaging engineer faces changes from project to project, and from company to company, yet some constants should continue into the foreseeable future. One of these is the emphasis on ther mal design. Although just a few years ago thermal analysis of electronic equipment was an afterthought, it is becoming one of the primary aspects of many packaging jobs. It seems that the days of just adding a bigger fan to reduce the overheat ing problem are almost over. Replacing that thought is the up-front commitment to CFD (Computational Fluid Dynamics) software code, FEA (Finite Element Analysis) software, and the realization that the problem will only get worse. As the electronic circuit size is reduced, speed is increased. As the power of these systems increases and the volume allowed diminishes, heat flux or density (heat per unit area, W/m 2 or Btulh ft2) has spiraled. Much of the improvement in the reliability and packaging density of electronic circuits can be traced to advances in thermal design. While air cooling is still used extensively, advanced heat transfer techniques using exotic synthetic liquids are becoming more prominent, allowing still smaller systems to be manufactured. The appli cation of advanced thermal management techniques requires a background in fluid dynamics.
In a field where change and growth is inevitable, new electronic packaging problems continually arise. Smaller, more powerful devices are prone to overheating, causing intermittent system failures, corrupted signals, lower MTBF, and outright system failure. Since convection cooling is the heat transfer path most engineers take to deal with thermal problems, it is appropriate to gain as much understanding about the underlying mechanisms of fluid motion as possible. Thermal Design of Electronic Equipment is the only book that specifically targets the formulas used by electronic packaging and thermal engineers. It presents heat transfer equations dealing with polyalphaolephin (PAO), silicone oils, perfluorocarbons, and silicate ester-based liquids. Instead of relying on theoretical expressions and text explanations, the author presents empirical formulas and practical techniques that allow you to quickly solve nearly any thermal engineering problem in electronic packaging.
In a field where change and growth is inevitable, new electronic packaging problems continually arise. Smaller, more powerful devices are prone to overheating, causing intermittent system failures, corrupted signals, lower MTBF, and outright system failure. Since convection cooling is the heat transfer path most engineers take to deal with thermal problems, it is appropriate to gain as much understanding about the underlying mechanisms of fluid motion as possible. Thermal Design of Electronic Equipment is the only book that specifically targets the formulas used by electronic packaging and thermal engineers. It presents heat transfer equations dealing with polyalphaolephin (PAO), silicone oils, perfluorocarbons, and silicate ester-based liquids. Instead of relying on theoretical expressions and text explanations, the author presents empirical formulas and practical techniques that allow you to quickly solve nearly any thermal engineering problem in electronic packaging.
The continuing trend toward miniaturization and high power density electronics results in a growing interdependency between different fields of engineering. In particular, thermal management has become essential to the design and manufacturing of most electronic systems.Heat Transfer: Thermal Management of Electronics details how engineers can use
A powerful methodology for producing superior thermal performance at low cost with minimum added mass . . . Here is the only available comprehensive treatment of the design and analysis of heat sinks. It provides all the theoretical and practical information necessary to successfully design and/or select cost-effective heat sinks for electronic equipment. The presentation includes detailed explanations of the governing heat transfer phenomena, complete coverage of thermal modeling tools for geometrically complex fin structures, and extensive discussion on recognizing thermal optimization opportunities. Other topics covered include: Fundamentals of heat transfer Thermal modeling of electronic packages Mathematical tools for heat-sink analysis and design Prevailing thermal transport processes Models for a variety of fin geometries Simple "transfer function" relations for single fin, cascaded fin, and fin array heat sinks Thermal characterization and optimization of plate-fin heat sinks Completely self-contained and filled with valuable information not available from any other single source, Design and Analysis of Heat Sinks is both a superior reference for accomplished thermal specialists and an excellent textbook for graduate courses in advanced thermal applications for mechanical engineering students. This book can also serve as a text in thermal science for students of electrical engineering.
With an increased demand on system reliability and performance combined with the miniaturization of devices, thermal consideration has become a crucial factor in the design of electronic packaging, from chip to system levels. This new book emphasizes the solving of practical design problems in a wide range of subjects related to various heat transfer technologies. While focusing on understanding the physics involved in the subject area, the authors have provided substantial practical design data and empirical correlations used in the analysis and design of equipment. The book provides the fundamentals along with a step-by-step analysis approach to engineering, making it an indispensable reference volume. The authors present a comprehensive convective heat transfer catalog that includes correlations of heat transfer for various physical configurations and thermal boundary conditions. They also provide property tables of solids and fluids. Lian-Tuu Yeh and Richard Chu are recognized experts in the field of thermal management of electronic systems and have a combined 60 years of experience in the defense and commercial industries.
Thermal System Design and Simulation covers the fundamental analyses of thermal energy systems that enable users to effectively formulate their own simulation and optimal design procedures. This reference provides thorough guidance on how to formulate optimal design constraints and develop strategies to solve them with minimal computational effort. The book uniquely illustrates the methodology of combining information flow diagrams to simplify system simulation procedures needed in optimal design. It also includes a comprehensive presentation on dynamics of thermal systems and the control systems needed to ensure safe operation at varying loads. Designed to give readers the skills to develop their own customized software for simulating and designing thermal systems, this book is relevant for anyone interested in obtaining an advanced knowledge of thermal system analysis and design. - Contains detailed models of simulation for equipment in the most commonly used thermal engineering systems - Features illustrations for the methodology of using information flow diagrams to simplify system simulation procedures - Includes comprehensive global case studies of simulation and optimization of thermal systems
The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.
This book presents high-quality papers from the Seventh Asia International Symposium on Mechatronics (AISM 2019). It discusses the latest technological trends and advances in electromechanical coupling and environmental adaptability design for electronic equipment, sensing and measurement, mechatronics in manufacturing and automation, micro-mechatronics, energy harvesting & storage, robotics, automation and control systems. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements, and testing. The applications and solutions discussed here provide excellent reference material for future product developments.