Download Free Advanced Technologies In Rehabilitation Book in PDF and EPUB Free Download. You can read online Advanced Technologies In Rehabilitation and write the review.

Intends to examine the focus and aims that drive rehabilitation intervention and technology development. This book addresses the questions of what research is taking place to develop rehabilitation, applied technology and how we have been able to modify and measure responses in both healthy and clinical populations using these technologies.
The book provides readers with a comprehensive overview of the state of the art in the field of gait and balance rehabilitation. It describes technologies and devices together with the requirements and factors to be considered during their application in clinical settings. The book covers physiological and pathophysiological basis of locomotion and posture control, describes integrated approaches for the treatment of neurological diseases and spinal cord injury, as well as important principles for designing appropriate clinical studies. It presents computer and robotic technologies currently used in rehabilitation, such as exoskeleton devices, functional electrical stimulation, virtual reality and many more, highlighting the main advantages and challenges both from the clinical and engineering perspective. Written in an easy-to-understand style, the book is intended for people with different background and expertise, including medical and engineering students, clinicians and physiotherapists, as well as technical developers of rehabilitation systems and their corresponding human-compute interfaces. It aims at fostering an increased awareness of available technologies for balance and gait rehabilitation, as well as a better communication and collaboration between their users and developers.
This contributed volume presents the current state of research on regenerative rehabilitation across a broad range of neuro- and musculoskeletal tissues. At its core, the primary goal of regenerative rehabilitation is to restore function after damage to bones, skeletal muscles, cartilage, ligaments/tendons, or tissues of the central and peripheral nervous systems. The authors describe the physiology of these neuro- and musculoskeletal tissue types and their inherent plasticity. The latter quality is what enables these tissues to adapt to mechanical and/or chemical cues to improve functional capacity. As a result, readers will learn how regenerative rehabilitation exploits that quality, to trigger positive changes in tissue function. Combining basic, translational, and clinical aspects of the topic, the book offers a valuable resource for both scientists and clinicians in the regenerative rehabilitation field.
Prostheses, assistive systems, and rehabilitation systems are essential to increasing the quality of life for people with disabilities. Research and development over the last decade has resulted in enormous advances toward that goal-none more so than the development of intelligent systems and technologies. In the first truly comprehensive book addressing intelligent technologies for the disabled, top experts from around the world provide an overview of this dynamic, rapidly evolving field. They present state-of-the-art information on the latest, innovative technologies and their applications in various systems designed to better the lives of the disabled. From the underlying principles to the design, practical applications, and assessment of results, Intelligent Systems and Technologies in Rehabilitation Engineering offers broad, pragmatic coverage of the field. It incorporates the most recent advances in sensory and limb prostheses, myoelectric control systems, circulatory systems, assistive technologies, and applications of virtual reality. Rapid progress demands a concerted effort to keep up with the latest developments so they can begin to serve their purpose and improve the lives of the disabled. By incorporating details of the latest and most important advances into one volume, Intelligent Systems and Technologies in Rehabilitation Engineering makes that undertaking essentially effortless.
One of the major application targets of service robots is to use them as assistive devices for rehabilitation. This book introduces some latest achievements in the field of rehabilitation robotics and assistive technology for people with disabilities and aged people. The book contains results from both theoretical and experimental works and reviews on some new advanced rehabilitation devices which has been recently transferred to the industry. Significant parts of the book are devoted to the assessment of new rehabilitation technologies, the evaluation of prototype devices with end-users, the safety of rehabilitation robots, and robot-assisted neurorehabilitation. The book is a representative selection of the latest trends in rehabilitation robotics and can be used as a reference for teaching on mechatronic devices for rehabilitation.
This revised, updated, and substantially expanded third edition provides an accessible, practical overview of major areas of research, technical development and clinical application in the field of neurorehabilitation movement therapy. The initial section provides the basic framework and a rationale for technology application in movement therapy by summarizing recent findings in neuroplasticity and motor learning. The following section provides a detailed overview of the movement physiology of various neurologic conditions, illustrating how this knowledge has been used to design various neurorehabilitation technologies. The third section then explains the principles of human-machine interaction for movement rehabilitation. The fourth section provides an overview of assessment technology and predictive modeling in neurorehabilitation. The fifth section provides a survey of technological approaches to neurorehabilitation, including spinal cord stimulation, functional electrical stimulation, virtual reality, wearable sensing, brain computer interfaces, mobile technologies, and telerehabilitation. The final two sections examine in greater detail the ongoing revolution in robotic therapy for upper extremity movement and walking, respectively. The promises and limitations of these technologies in neurorehabilitation are discussed, including an Epilogue which debates the impact and utility of robotics for neurorehabilitation. Throughout the book the chapters provide detailed practical information on state-of-the-art clinical applications of these devices following stroke, spinal cord injury, and other neurologic disorders and future developments in the field. The text is illustrated throughout with photographs and schematic diagrams which serve to clarify the information for the reader. Neurorehabilitation Technology, Third Edition is a valuable resource for neurologists, biomedical engineers, roboticists, rehabilitation specialists, physiotherapists, occupational therapists and those training in these fields. Chapter “Spinal Cord Stimulation to Enable Leg Motor Control and Walking in People with Spinal Cord Injury is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as ‘optimal’ trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other’s dynamics. Provides a comprehensive review of recent developments in the area of rehabilitation robotics Includes information on both therapeutic and assistive robots Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems
In a time of ongoing pandemic when well-being is a priority this volume presents latest works across disciplines associated to Virtual Patients, Gamification and Simulation. Chapters herein present international perspectives with authors from around the globe contributing to this impactful third edition to the series following a 2014 Springer book on Technologies for Inclusive Well-Being and a 2017 Springer book Recent Advances in Technologies for Inclusive Well-Being. Digital technologies are pervasive in life and the contributions herein focus on specific attributes and situations, especially in training and treatment programmes spanning across ranges of diagnosis, conditions, ages, and targeted impacts. This volume purposefully does not cover all (even if that was possible) aspects on how virtual interactive space can align to statial computing, which in turn can align with related embodied entities (whatever the terms used e.g. Virtual, Augmented, Extended, Mixed Realities) along with AI, Deep Learning etc. It also doesn’t cover what some may refer to as ‘trendy terms’ such as 360 degree, video, WebXR, cryptocurrency, blockchain, virtual goods, AR museums, travel and teleportation...however, what is covered in this book, and the prior volumes it builds upon (as above), is a sharing and questioning of advancing technologies for inclusive well-being through research and practices from an avant-garde perspective.
Soft Robotics in Rehabilitation explores the specific branch of robotics dealing with developing robots from compliant and flexible materials. Unlike robots built from rigid materials, soft robots behave the way in which living organs move and adapt to their surroundings and allow for increased flexibility and adaptability for the user. This book is a comprehensive reference discussing the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs. The book examines various techniques applied in soft robotics, including the development of soft actuators, rigid actuators with soft behavior, intrinsically soft actuators, and soft sensors. This book is perfect for graduate students, researchers, and professional engineers in robotics, control, mechanical, and electrical engineering who are interested in soft robotics, artificial intelligence, rehabilitation therapy, and medical and rehabilitation device design and manufacturing. - Outlines the application of soft robotic techniques to design platforms that provide rehabilitation therapy for disabled persons to help improve their motor functions - Discusses the application of soft robotics for rehabilitation of upper and lower extremities separated by various limbs - Offers readers the ability to find soft robotics devices, methods, and results for any limb, and then compare the results with other options provided in the book