Download Free Advanced Techniques For The Design Of Zero Energy Buildings Book in PDF and EPUB Free Download. You can read online Advanced Techniques For The Design Of Zero Energy Buildings and write the review.

"The overall aim of the first chapter is to improve the knowledge about the simulation of thermal indoor climate for buildings in different climate conditions and its application for computer-based simulations. The work is done in order to simplify the use of CFD as a powerful tool in order to model the temperature distribution within the building envelope in two real cases in Switzerland, and promote a comfortable indoor environment with a maximum reduction of energy consumption. High energy materials like cement, glass, brick and steel are typically used in building construction. However, it is possible to reduce the environmental impact of any structure through the use of alternative, low-energy materials such as Silica aerogels (aerogel-based plasters), Expanded Polystyrene (EPS), Polyurethane foams (PU), and Mineral wool (Stone or Glass). Increased interest has focused on the development of advanced sustainable construction materials (Nano thermal insulation materials, aerogels, etc.) with adequate mechanical properties and durability performance. The most convenient way to get the most out of their investment in a building is to use energy modeling software. The second chapter will be primarily concerned with the choice of materials, then the suitability of insulation exterior facades. Geothermal is the most energy efficient and environmentally friendly method of heating and cooling buildings. The design of borehole thermal energy, as a common type of geothermal energy, is presented in Chapter Three. The calculation is based on heat transfer principles, including a case study of a BHE for a one-story house with all the properties related to analyze the BHE, e.g., to calculate the changes in the temperature of the circulating fluid. Economic analysis of implementing renewable energy technologies in buildings is especially important for a transition away from the greenhouse emitting energies since a great majority of the current capital stock and infrastructure of today's economic systems are adjusted based on fossil-fuel energies. Chapter Four presents a diverse collection of examples with economic analysis of costs and paybacks covering warm vs cold, social complexes vs private houses, and new vs historical buildings. Solar energy has various uses besides more energy production and it can be incorporated in applications with cooling, heating and desalination processes. The main objectives of Chapter Five are to assess the degree of energy reduction using solar energy in buildings and to establish the requirements for energy-efficient design of buildings in cold/hot regions. Payback period analysis that evaluates the cost savings resulting from energy efficiency improvements is also addressed"--
Building energy design is currently going through a period of major changes. One key factor of this is the adoption of net-zero energy as a long term goal for new buildings in most developed countries. To achieve this goal a lot of research is needed to accumulate knowledge and to utilize it in practical applications. In this book, accomplished international experts present advanced modeling techniques as well as in-depth case studies in order to aid designers in optimally using simulation tools for net-zero energy building design. The strategies and technologies discussed in this book are, however, also applicable for the design of energy-plus buildings. This book was facilitated by International Energy Agency's Solar Heating and Cooling (SHC) Programs and the Energy in Buildings and Communities (EBC) Programs through the joint SHC Task 40/EBC Annex 52: Towards Net Zero Energy Solar Buildings R&D collaboration. After presenting the fundamental concepts, design strategies, and technologies required to achieve net-zero energy in buildings, the book discusses different design processes and tools to support the design of net-zero energy buildings (NZEBs). A substantial chapter reports on four diverse NZEBs that have been operating for at least two years. These case studies are extremely high quality because they all have high resolution measured data and the authors were intimately involved in all of them from conception to operating. By comparing the projections made using the respective design tools with the actual performance data, successful (and unsuccessful) design techniques and processes, design and simulation tools, and technologies are identified. Written by both academics and practitioners (building designers) and by North Americans as well as Europeans, this book provides a very broad perspective. It includes a detailed description of design processes and a list of appropriate tools for each design phase, plus methods for parametric analysis and mathematical optimization. It is a guideline for building designers that draws from both the profound theoretical background and the vast practical experience of the authors.
What do we mean by net zero energy? Zero operating energy? Zero energy costs? Zero emissions? There is no one answer: approaches to net zero building vary widely across the globe and are influenced by different environmental and cultural contexts. Net Zero Energy Building: Predicted and Unintended Consequences presents a comprehensive overview of variations in 'net zero' building practices. Drawing on examples from countries such as the United States, United Kingdom, Germany, Japan, Hong Kong, and China, Ming Hu examines diverse approaches to net zero and reveals their intended and unintended consequences. Existing approaches often focus on operating energy: how to make buildings more efficient by reducing the energy consumed by climate control, lighting, and appliances. Hu goes beyond this by analyzing overall energy consumption and environmental impact across the entire life cycle of a building—ranging from the manufacture of building materials to transportation, renovation, and demolition. Is net zero building still achievable once we look at these factors? With clear implications for future practice, this is key reading for professionals in building design, architecture, and construction, as well as students on sustainable and green architecture courses.
This book highlights the various technologies that are currently available or are now being developed for the green and smart buildings of the future. It examines why green building performance is important, and how it can be measured and rated using appropriate benchmarking systems. Lastly, the book provides an overview of the state-of-the-art in green building technologies and the trend towards zero energy or net positive energy buildings in the future.
Net Zero Energy Buildings (NZEB): Concepts, Frameworks and Roadmap for Project Analysis and Implementation provides readers with the elements they need to understand, combine and contextualize design decisions on Net Zero Energy Buildings. The book is based on learned lessons from NZEB design, construction, operation that are integrated to bring the most relevant topics, such as multidisciplinarity, climate sensitivity, comfort requirements, carbon footprints, construction quality and evidence-based design. Chapters introduce the context of high performance buildings, present overviews of NZEB, cover the performance thresholds for efficient buildings, cover materials, micro-grid and smart grids, construction quality, performance monitoring, post occupancy evaluation, and more. - Offers a roadmap for engaging in energy efficiency in high performance buildings projects - Combines solid grounding in core concepts, such as energy efficiency, with a wider context that includes the technical, socio-cultural and environmental dimensions - Covers key areas for decision-making - Provides a logical framework to analyze projects in the context of environmental change - Presents worldwide examples and cases for different climates and societies
The building industry is one of the largest energy consumers and countries all over the world are striving to design buildings that satisfy the user’s expectations while containing their energy consumption. In this context, zero-energy buildings have emerged as a technological paradigm that can solve this global issue, but its implementation in different contexts has brought a profound debate about its technical, social, and environmental limitations. Thanks to contributions from a variety of scholars from different countries, this book explores different aspects of the zero-energy buildings and gives the reader a broad view of the feasibility of implementation in different contexts.
"Net zero energy buildings, equilibrium buildings or carbon neutral cities – depending on location and the reasons for making the calculation, the numbers are run differently. The variety of terms in use indicates that a scientific method is still lacking – which is a problem not just in regard to international communication, but also with respect to planning processes as a response to energy challenges. The clarification and meaning of the most important terms in use is extremely important for their implementation. Since October 2008, a panel of experts from an international energy agency has concerned itself with these topics as part of a project entitled “Towards Net Zero Energy Solar Buildings”. The objective is to analyse exemplary buildings that are near a zero-energy balance in order to develop methods and tools for the planning, design and operation of such buildings. The results are documented in this publication: In addition to the presentation of selected projects, it is not just architectural showcase projects that are shown – the focus is on relaying knowledge and experience gained by planners and builders. Even if many questions remain unanswered: Project examples that have already been implemented prove on a practical basis that the objective of a zero energy balance is already possible today."
Net Zero-Energy Buildings have been the object of numerous studies in recent years as various countries have set this performance level as a long-term goal of their energy policies. This book presents a unique study of 30 NZEBs that have been constructed and have had their performance measured for at least 12 months. The study is based upon an international collaborative research initiated by the International Energy Agency - the Solar Heating and Cooling Programme (SHC). It is the first book to evaluate building strategies in houses, educational buildings and offices that have been demonstrated to work in practice. It examines how the design challenges of climate and building type have been addressed, and to what extent the various design approaches have been successful. This book presents convincing evidence that a careful re-thinking of conventional design norms can achieve a far greater performance benefit than is normally feasible. It identifies `solution sets? that work at the whole building level and at the individual building design challenge level for each climate and building type. In doing so, the book provides guidance as to how to improve the design by learning from these cases. Unusually for a book of this type it has examples of buildings in what are conventionally labeled "hot" and "cold" climates. A simple process is proposed for the reader to commission the analysis of their own climate to assess not only the conventional measure of how hot or cold or humid it is, but also to assess its suitability to support other NZEB technical challenge solutions sets such as Daylight or Natural Ventilation or comfort based climate conditioning.
This book presents 18 in-depth case studies of net zero energy buildings—low-energy building that generate as much energy as they consume over the course of a year—for a range of project types, sizes, and U.S. climate zones. Each case study describes the owner’s goals, the design and construction process, design strategies, measurement and verification activities and results, and project costs. With a year or more of post-occupancy performance data and other project information, as well as lessons learned by project owners and developers, architects, engineers, energy modelers, constructors, and operators, each case study answers the questions: What were the challenges to achieving net zero energy performance, and how were these challenges overcome? How would stakeholders address these issues on future projects? Are the occupants satisfied with the building? Do they find it comfortable? Is it easy to operate? How can other projects benefit from the lessons learned on each project? What would the owners, designers, and constructors do differently knowing what they know now? A final chapter aggregates processes to engage in and pitfalls to avoid when approaching the challenges peculiar to designing, constructing, and owning a net zero energy building. By providing a wealth of comparable information, this book which will flatten the learning curve for designing, constructing, and owning this emerging building type and improve the effectiveness of architectural design and construction.
Bei Neubauten wird von den meisten Industrieländern langfristig das Ziel von Netto-Nullenergiegebäuden verfolgt. Dieses Buch hilft Planern bei der optimalen Nutzung von Simulationstools für die Planung von Netto-Nullenergiegebäuden. In dem Buch werden sowohl moderne Modellierungstechniken als auch eingehende Einzelfallstudien vorgestellt. Das Buch wurde von international renommierten Experten erarbeitet und ist im Rahmen folgender Forschungsvorhaben der Internationalen Energieagentur entstanden: Solar Heating and Cooling Programme (SHC) und Energy in Buildings and Communities Programme (EBC).