Download Free Advanced Techniques For Maintenance Modeling And Reliability Analysis Of Repairable Systems Book in PDF and EPUB Free Download. You can read online Advanced Techniques For Maintenance Modeling And Reliability Analysis Of Repairable Systems and write the review.

ADVANCED TECHNIQUES FOR MAINTENANCE MODELING AND RELIABILITY ANALYSIS OF REPAIRABLE SYSTEMS This book covers advanced models and methodologies for reliability analysis of large, complex, and critical repairable systems that undergo imperfect maintenance actions in industries having MRO facilities and also covers real-life examples from the field of aviation. The content presented in this book is inspired by the existing limitations of the generalized renewal process (GRP) model and the problems confronted by the maintenance, repair, and operations (MRO) facilities in industries dealing with large and complex repairable systems. Through this book, the authors have attempted to equip the MRO facilities with more advanced scientific tools and techniques by addressing various limitations related to the reliability analysis of repairable systems. The book is dedicated to various imperfect maintenance-based virtual age models and methodologies to bridge various research gaps present in the available literature. A summary of deliverables is as follows: Presents the basic concepts of maintenance and provides a virtual age model that can accommodate all maintenance; Provides the basic concepts of censoring in repairable systems along with the concept of black box and failure modes. Also highlighted is how the proposed work will be useful for industries conducting failure modes and effect analysis (FMEA) and estimating the mean residual life (MRL) of repairable systems; Presents methodology that applies risk-based threshold on intensity function and provides a threshold to declare the system/component as high failure rate components (HFRCs); Identifying a system as HFRCs is an important task, but for an industry dealing with critical systems, preventing the system from being HFRC is more important, since the risk involved in such systems would be very high. Thus, the book presents a progressive maintenance policy (PMP) for repairable systems; Focusses on qualitative analysis of repair quality. Assuming repair quality as a subjective variable, the authors have presented various factors that affect the repair quality most and modeled their interdependency using Bayesian networks (BN). Audience Professional reliability engineers, reliability administrators, consultants, managers, and post-graduate students in engineering schools. The book belongs to any engineering, technical, and academic institution concerned with manufacturing, production, aviation, defense, and software industries.
This book provides an application-oriented framework for reliability modeling and analysis of repairable systems in conjunction with the procurement process of weapon systems and throughput analysis for industries. Most of the reliability literature is directed towards non-repairable systems, that is, systems that fail are discarded or replaced. This book is mainly dedicated towards providing coverage to the reliability modeling and analysis of repairable systems that undergo failure-repair cycles. This unique book provides a comprehensive framework for the modeling and analysis of repairable systems considering both the non-parametric and parametric approaches to deal with their failure data. The book presents MCF based non-parametric approach with several illustrative examples and the generalized renewal process (GRP) based arithmetic reduction of age (ARA) models along with its applications to the systems failure data from the aviation industry. A complete chapter on an integrated framework for procurement process is devoted by utilizing the concepts of multi-criteria decision-making (MCDM) techniques which will of a great assistance to the readers in enhancing the potential of their respective organizations. This book also presents FMEA methods tailored for GRP based repairs. This text has primarily emerged from the industrial experience and research work of the authors. A number of illustrations have been included to make the subject lucid and vivid even to the readers who are relatively new to this area. Besides, various examples have been provided to display the applicability of presented models and methodologies to assist the readers in applying the concepts presented in this book.
Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability
This book promotes and describes the application of objective and effective decision making in asset management based on mathematical models and practical techniques that can be easily implemented in organizations. This comprehensive and timely publication will be an essential reference source, building on available literature in the field of asset management while laying the groundwork for further research breakthroughs in this field. The text provides the resources necessary for managers, technology developers, scientists and engineers to adopt and implement better decision making based on models and techniques that contribute to recognizing risks and uncertainties and, in general terms, to the important role of asset management to increase competitiveness in organizations.
Reliability is an essential concept in mathematics, computing, research, and all disciplines of engineering, and reliability as a characteristic is, in fact, a probability. Therefore, in this book, the author uses the statistical approach to reliability modelling along with the MINITAB software package to provide a comprehensive treatment of modelling, from the basics through advanced modelling techniques.The book begins by presenting a thorough grounding in the elements of modelling the lifetime of a single, non-repairable unit. Assuming no prior knowledge of the subject, the author includes a guide to all the fundamentals of probability theory, defines the various measures associated with reliability, then describes and discusses the more common lifetime models: the exponential, Weibull, normal, lognormal and gamma distributions. She concludes the groundwork by looking at ways of choosing and fitting the most appropriate model to a given data set, paying particular attention to two critical points: the effect of censored data and estimating lifetimes in the tail of the distribution.The focus then shifts to topics somewhat more difficult:the difference in the analysis of lifetimes for repairable versus non-repairable systems and whether repair truly ""renews"" the systemmethods for dealing with system with reliability characteristic specified for more than one component or subsystemthe effect of different types of maintenance strategiesthe analysis of life test dataThe final chapter provides snapshot introductions to a range of advanced models and presents two case studies that illustrate various ideas from throughout the book.
This book compiles and examines advanced technologies in the field of reliability and risk analysis. It presents comprehensive methodologies and up-to-date software along with examples of practical case studies from industrial areas to provide a realistic and authentic platform for readers.
Maintenance models are critical for evaluation of the alternative maintenance policies for modern engineering systems. A poorly selected policy can result in excessive life-cycle costs as well as unnecessary risks for catastrophic failures of the system. Economic dependence refers to the difference between the cost of combining the maintenance of a number of components and the cost of performing the same maintenance actions individually. Maintenance that takes advantage of this difference is often called opportunistic. Large number of components and economic inter-dependence are two pervasive characteristics of modern engineering systems that make the modeling of their maintenance processes particularly challenging. Simulation is able to handle both of these characteristics computationally, but the complexity, especially from the model verification perspective, becomes overwhelming as the number of components increases. This research introduces a new procedure for maintenance models of multi-unit repairable systems with economic dependence among its components and under opportunistic maintenance policies. The procedure is based on the stochastic Petri net with aging tokens modeling framework and it makes use of a component-level model approach to overcome the state explosion of the model combined with a novel order-reduction scheme that effectively combines the impact of other components into a single distribution. The justification for the used scheme is provided, the accuracy is assessed, and applications for the systems of realistic complexity are considered.
The management of technical plants for productivity and safety is generally a complex activity, particularly when many plants in one territory are affected, quality guarantees and cost results are required, and the technology involved is heterogeneous and innovative. To enable readers to manage technical plants efficiently, despite the above complications, Methodologies and Techniques for Advanced Maintenance presents theories, methodologies and practical tools for the realization of an intelligent maintenance management system for distant monitoring. It also covers the development and running of a remote control center. The so-called granted availability management system (GrAMS) was conceived to enable organizations involved in technical-industrial plant management to move towards “well known availability” and “zero failures” management. In particular, Methodologies and Techniques for Advanced Maintenance deals with the diagnostic aspects and safety levels of technical plants (such as elevators, thermo-technical plants, etc.). The author also discusses the usage of ad hoc designed software analysis tools based on neural networks and reliability indicators. Methodologies and Techniques for Advanced Maintenance is a useful text for practitioners and researchers in maintenance and facilities. Its application spans industrial, plant, technological, infrastructure and civil fields.
Complex high-technology devices are in growing use in industry, service sectors, and everyday life. Their reliability and maintenance is of utmost importance in view of their cost and critical functions. This book focuses on this theme and is intended to serve as a graduate-level textbook and reference book for scientists and academics in the field. The chapters are grouped into five complementary parts that cover the most important aspects of reliability and maintenance: stochastic models of reliability and maintenance, decision models involving optimal replacement and repair, stochastic methods in software engineering, computational methods and simulation, and maintenance management systems. This wide range of topics provides the reader with a complete picture in a self-contained volume.
This book surveys the recent development of maintenance theory, advanced maintenance techniques with shock and damage models, and their applications in computer systems dealing with efficiency problems. It also equips readers to handle multiple maintenance, informs maintenance policies, and explores comparative methods for several different kinds of maintenance. Further, it discusses shock and damage modelling as an important failure mechanism for reliability systems, and extensively explores the degradation processes, failure modes, and maintenance characteristics of modern, highly complex systems, especially for some key mechanical systems designed for specific tasks.