Download Free Advanced Stellar Astrophysics Book in PDF and EPUB Free Download. You can read online Advanced Stellar Astrophysics and write the review.

This advanced 1998 textbook on stellar astrophysics provides a comprehensive and self-contained introduction for graduate students.
An Introduction to Stellar Astrophysics aspires to provide the reader with an intermediate knowledge on stars whilst focusing mostly on the explanation of the functioning of stars by using basic physical concepts and observational results. The book is divided into seven chapters, featuring both core and optional content: Basic concepts Stellar Formation Radiative Transfer in Stars Stellar Atmospheres Stellar Interiors Nucleosynthesis and Stellar Evolution and Chemically Peculiar Stars and Diffusion. Student-friendly features include: Detailed examples to help the reader better grasp the most important concepts A list of exercises is given at the end of each chapter and answers to a selection of these are presented. Brief recalls of the most important physical concepts needed to properly understand stars. A summary for each chapter Optional and advanced sections are included which may be skipped without interfering with the flow of the core content. This book is designed to cover the most important aspects of stellar astrophysics inside a one semester (or half-year) course and as such is relevant for advanced undergraduate students following a first course on stellar astrophysics, in physics or astronomy programs. It will also serve as a basic reference for a full-year course as well as for researchers working in related fields.
Astrophysical dynamos are at the heart of cosmic magnetic fields of a wide range of scales, from planets and stars to entire galaxies. This book presents a thorough, step-by-step introduction to solar and stellar dynamos. Looking first at the ultimate origin of cosmic seed magnetic fields, the antagonists of field amplification are next considered: resistive decay, flux expulsion, and flows ruled out by anti-dynamo theorems. Two kinematic flows that can act as dynamos are then studied: the Roberts cell and the CP-flow. Mean-field electrodynamics and derivation of the mean-field dynamo equations lead to the alpha Omega-dynamo, the flux transport dynamo, and dynamos based on the Babcock-Leighton mechanism. Alternatives to the mean-field theory are also presented, as are global MHD dynamo simulations. Fluctuations and grand minima in the solar cycle are discussed in terms of dynamo modulations through stochastic forcing and nonlinear effects. The book concludes with an overview of the major challenges in understanding stellar magnetic fields and their evolution in terms of various dynamo models, global MHD simulations, and fossil fields. Each chapter is accompanied by an annotated bibliography, guiding the readers to the relevant technical literature, which may lead them to carry out their own research in the field of dynamo theory.
This book is the final one in a series of three texts which together provide a modern, complete and authoritative account of our present knowledge of the stars. It discusses the internal structure and the evolution of stars, and is completely self-contained. There is an emphasis on the basic physics governing stellar structure and the basic ideas on which our understanding of stellar structure is based. The book also provides a comprehensive discussion of stellar evolution. Careful comparison is made between theory and observation, and the author has thus provided a lucid and balanced introductory text for the student. As for volumes 1 and 2, volume 3 is self-contained and can be used as an independent textbook. The author has not only taught but has also published many original papers in this subject. Her clear and readable style should make this text a first choice for undergraduate and beginning graduate students taking courses in astronomy and particularly in stellar astrophysics.
This 2003 book develops the basic underlying physics required for a fuller, richer understanding of the science of astrophysics and the important astronomical phenomena it describes. The cosmos manifests phenomena in which physics can appear in its most extreme, and therefore more insightful, forms. A proper understanding of phenomena like black holes, quasars and extrasolar planets requires that we understand the physics that underlies all of astrophysics. Consequently, developing astrophysical concepts from fundamental physics has the potential to achieve two goals: to derive a better understanding of astrophysical phenomena from first principles and to illuminate the physics from which the astrophysics is developed. To that end, astrophysical topics are grouped according to the relevant areas of physics. The book is ideal as a text for graduate and advanced undergraduate students as well as a reference for established researchers.
Using fundamental physics, the theory of stellar structure and evolution can predict how stars are born, how their complex internal structure changes, what nuclear fuel they burn, and their ultimate fate. This textbook is a stimulating introduction for undergraduates in astronomy, physics and applied mathematics, taking a course on the physics of stars. It uniquely emphasises the basic physical principles governing stellar structure and evolution. This second edition contains two new chapters on mass loss from stars and interacting binary stars, and new exercises. Clear and methodical, it explains the processes in simple terms, while maintaining mathematical rigour. Starting from general principles, this textbook leads students step-by-step to a global, comprehensive understanding of the subject. Fifty exercises and full solutions allow students to test their understanding. No prior knowledge of astronomy is required, and only a basic background in physics and mathematics is necessary.
Three eminent scientists, each well known for the clarity of their writing, present for students and researchers what is known about the internal structure, origin and evolution of White Dwarfs, Neutron Stars and Black Holes, all objects at the final stage of stellar evolution. They cover fascinating topics such as pulsation of white dwarfs, millisecond pulsars or the dynamics around black holes. The book is written for graduate students in astrophysics, but is also of interest to professional astronomers and physicists.
In the past two decades, scientists have made remarkable progress in understanding stars. This graduate-level textbook provides a systematic, self-contained and lucid introduction to the physical processes and fundamental equations underlying all aspects of stellar astrophysics. The timely volume provides authoritative astronomical discussions as well as rigorous mathematical derivations and illuminating explanations of the physical concepts involved. In addition to traditional topics such as stellar interiors and atmospheres, the reader is introduced to stellar winds, mass accretion, nuclear astrophysics, weak interactions, novae, supernovae, pulsars, neutron stars and black holes. A concise introduction to general relativity is also included. At the end of each chapter, exercises and helpful hints are provided to test and develop the understanding of the student. As the first advanced textbook on stellar astrophysics for nearly three decades, this long-awaited volume provides a thorough introduction for graduate students and an up-to-date review for researchers.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
Describes how stars respond to microscopic physics in the advanced stages of their evolution with many numerical examples and illustrations.