Download Free Advanced Signal Processing Algorithms Based On Novel Nuclear Quadrupole Resonance Models For The Detection Of Explosives Book in PDF and EPUB Free Download. You can read online Advanced Signal Processing Algorithms Based On Novel Nuclear Quadrupole Resonance Models For The Detection Of Explosives and write the review.

This book is about improving prohibited substances detection using the nuclear quadrupole resonance (NQR) technique at security checkpoints. The book proposes multiple signal processing and analysis techniques for improving detection of dangerous or contraband substances, such as explosives, narcotics, or toxic substances. Also, several hardware solutions are described and implemented in a custom-designed NQR spectrometer. A new approach to NQR signal detection is introduced using artificial intelligence/deep learning techniques. The book will be useful for for researchers and practitioners in the areas of electrical engineering, signal processing and analysis, applied spectroscopy, as well as for security or laboratory equipment manufacturers.
At the rate that government and nongovernmental organizations are clearing existing landmines, it will take 450-500 years to rid the world of them. Concerned about the slow pace of demining, the Office of Science and Technology asked RAND to assess potential innovative technologies being explored and to project what funding would be required to foster the development of the more promising ones. The authors of this report suggest that the federal government undertake a research and development effort to develop a multisensor mine detection system over the next five to eight years.
Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multiples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy observations is important in many speech and audio applications, where it is commonly referred to as pitch estimation. These applications include analysis, compression, separation, enhancement, automatic transcription and many more. In this book, an introduction to pitch estimation is given and a number of statistical methods for pitch estimation are presented. The basic signal models and associated estimation theoretical bounds are introduced, and the properties of speech and audio signals are discussed and illustrated. The presented methods include both single- and multi-pitch estimators based on statistical approaches, like maximum likelihood and maximum a posteriori methods, filtering methods based on both static and optimal adaptive designs, and subspace methods based on the principles of subspace orthogonality and shift-invariance. The application of these methods to analysis of speech and audio signals is demonstrated using both real and synthetic signals, and their performance is assessed under various conditions and their properties discussed. Finally, the estimators are compared in terms of computational and statistical efficiency, generalizability and robustness. Table of Contents: Fundamentals / Statistical Methods / Filtering Methods / Subspace Methods / Amplitude Estimation
This book provides readers with a solid understanding of the capabilities and limitations of the techniques used for buried object detection. Presenting theory along with applications and the existing technology, it covers the most recent developments in hardware and software technologies of sensor systems with a focus on primary sensors such as Ground Penetrating Radar (GPR) and auxiliary sensors such as Nuclear Quadruple Resonance (NQR). It is essential reading for students, practitioners, specialists, and academicians involved in the design and implementation of buried object detection sensors.
The chapters in this volume were presented at the July–August 2008 NATO Advanced Study Institute on Unexploded Ordnance Detection and Mitigation. The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy. For the ninth time we gathered at this idyllic spot to explore and extend the reciprocity between mathematics and engineering. The dynamic interaction between world-renowned scientists from the usually disparate communities of pure mathematicians and applied scientists which occurred at our eight previous ASI’s continued at this meeting. The detection and neutralization of unexploded ordnance (UXO) has been of major concern for very many decades; at least since the First World war. UXO continues to be the subject of intensive research in many ?elds of science, incl- ing mathematics, signal processing (mainly radar and sonar) and chemistry. While today’s headlines emphasize the mayhem resulting from the placement of imp- vised explosive devices (IEDs), humanitarian landmine clearing continues to draw signi?cant global attention as well. In many countries of the world, landmines threaten the population and hinder reconstruction and fast, ef?cient utilization of large areas of the mined land in the aftermath of military con?icts.
Proceedings of the NATO Advanced Research Workshop, held in Warwick, Coventry, U.K., 30 September-3 October 2003
The use of explosives in terror attacks, including improvised ones, presents an ongoing threat which requires the development of techniques for detecting a larger variety of explosives, faster detection, and with lower rates of false alarms. Counterterrorist detection techniques of explosives [...] covers the most successful techniques for explosives detection at present. This completely revised volume describes the most updated research findings, which will be used in the next generation of explosives detection technologies. New editors Drs. Avi Cagan and Jimmie Oxley have assembled in one volume a series of detection technologies of explosives, written by a group of scientists who are experts in each of these technologies. The book helps researchers to compare the advantages and disadvantages of all available methods in detecting explosives and, in effect, allow them to choose the correct instrumental screening technology according to the nature of the sample.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.
This publication addresses recent developments in neutron generator (NG) technology. It presents information on compact instruments with high neutron yield to be used for neutron activation analysis (NAA) and prompt gamma neutron activation analysis in combination with high count rate spectrometers. Traditional NGs have been shown to be effective for applications including borehole logging, homeland security, nuclear medicine and the on-line analysis of aluminium, coal and cement. Pulsed fast thermal neutron analysis, as well as tagged and timed neutron analysis, are additional techniques which can be applied using NG. Furthermore, NG can effectively be used for elemental analysis and is also effective for analysis of hidden materials by neutron radiography. Useful guidelines for developing NG based research laboratories are also provided in this publication.
The book is devoted to the description of the fundamentals in the area of magnetic resonance. The book covers two domains: radiospectroscopy and quantum radioelectronics. Radiospectroscopy comprises nuclear magnetic resonance , electron paramagnetic resonance, nuclear quadrupolar resonance, and some other phenomena. The radiospectroscopic methods are widely used for obtaining the information on internal (nano, micro and macro) structure of objects. Quantum radioelectronics, which was developed on the basis of radiospectroscopic methods, deals with processes in quantum amplifiers, generators and magnetometers. We do not know analogues of the book presented. The book implies a few levels of the general consideration of phenomena, that can be useful for different groups of readers (students, PhD students, scientists from other scientific branches: physics, chemistry, physical chemistry, biochemistry, biology and medicine).