Download Free Advanced Security And Safeguarding In The Nuclear Power Industry Book in PDF and EPUB Free Download. You can read online Advanced Security And Safeguarding In The Nuclear Power Industry and write the review.

Advanced Security and Safeguarding in the Nuclear Power Industry: State of the art and future challenges presents an overview of a wide ranging scientific, engineering, policy, regulatory, and legal issues facing the nuclear power industry. Editor Victor Nian and his team of contributors deliver a much needed review of the latest developments in safety, security and safeguards ("Three S's) as well as other related and important subject matters within and beyond the nuclear power industry. This book is particularly insightful to countries with an interest in developing a nuclear power industry as well as countries where education to improve society's opinion on nuclear energy is crucial to its future success. Advanced Security and Safeguarding in the Nuclear Power Industry covers the foundations of nuclear power production as well as the benefits and impacts of radiation to human society, international conventions, treaties, and standards on the "Three S's, emergency preparedness and response, and civil liability in the event of a nuclear accident. - The socio-technical and economic risks of civilian and military applications of atomic energy - Putting into perspective the hazards of radioactive sources and health impacts of exposure to radiation - Prevention and protection against severe nuclear accidents with a much needed update on lessons learnt from "Fukushima - International conventions, treaties, legal frameworks, standards and best practices on "Three S's, emergency preparedness and response, and civil liability - Evolving technological and institutional challenges facing the nuclear power industry in the future
On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.
Nuclear Safeguards, Security and Nonproliferation: Achieving Security with Technology and Policy, Second Edition is a comprehensive reference covering the cutting-edge technologies used to trace, track and safeguard nuclear material. Sections cover security, the illicit trafficking of nuclear materials, improvised nuclear devices, and how to prevent nuclear terrorism. International case studies of security at nuclear facilities and illegal nuclear trade activities provide specific examples of the complex issues surrounding the technology and policy for nuclear material protection, control and accountability. New case studies include analyses of nuclear programs of important countries, such as North Korea, Iran, and Kazakhstan, among others. This is a thoroughly updated, must-have volume for private and public organizations involved in driving national security, domestic and international policy issues relating to nuclear material security, non-proliferation, and nuclear transparency.
Countering Cyber Sabotage: Introducing Consequence-Driven, Cyber-Informed Engineering (CCE) introduces a new methodology to help critical infrastructure owners, operators and their security practitioners make demonstrable improvements in securing their most important functions and processes. Current best practice approaches to cyber defense struggle to stop targeted attackers from creating potentially catastrophic results. From a national security perspective, it is not just the damage to the military, the economy, or essential critical infrastructure companies that is a concern. It is the cumulative, downstream effects from potential regional blackouts, military mission kills, transportation stoppages, water delivery or treatment issues, and so on. CCE is a validation that engineering first principles can be applied to the most important cybersecurity challenges and in so doing, protect organizations in ways current approaches do not. The most pressing threat is cyber-enabled sabotage, and CCE begins with the assumption that well-resourced, adaptive adversaries are already in and have been for some time, undetected and perhaps undetectable. Chapter 1 recaps the current and near-future states of digital technologies in critical infrastructure and the implications of our near-total dependence on them. Chapters 2 and 3 describe the origins of the methodology and set the stage for the more in-depth examination that follows. Chapter 4 describes how to prepare for an engagement, and chapters 5-8 address each of the four phases. The CCE phase chapters take the reader on a more granular walkthrough of the methodology with examples from the field, phase objectives, and the steps to take in each phase. Concluding chapter 9 covers training options and looks towards a future where these concepts are scaled more broadly.
The Oxford Handbook of Nuclear Security provides a comprehensive examination of efforts to secure sensitive nuclear assets and mitigate the risk of nuclear terrorism and other non-state actor threats. It aims to provide the reader with a holistic understanding of nuclear security through exploring its legal, political, and technical dimensions at the international, national, and organizational levels. Recognizing there is no one-size-fits-all approach to nuclear security, the book explores fundamental elements and concepts in practice through a number of case studies which showcase how and why national and organizational approaches have diverged. Although focused on critiquing past and current activities, unexplored yet crucial aspects of nuclear security are also considered, and how gaps in international efforts might be filled. Contributors to the handbook are drawn from a variety of different disciplinary backgrounds and experiences, to provide a wide range of perspectives on nuclear security issues and move beyond the Western narratives that have tended to dominate the debate.These include scholars from both developed and developing nuclear countries, as well as practitioners working in the field of nuclear security in an effort to bridge the gap between theory and practice.
Nuclear Waste Management Facilities: Advances, Environmental Impacts, and Future Prospects examines best practices and recent trends in improving nuclear safety and reducing the negative environmental impacts of nuclear waste. With strong emphasis on regulatory requirements, this reference is essential for designing new integrated waste management practices, using lessons learned from historical and current practices. Divided into three key sections, Part One introduces the reader to the safety and environmental impacts of the nuclear industry. Part Two reviews recent technological and methodological approaches to enhancing safety, as well as reducing the carbon footprint of both individual processes and integrated facilities. Topics covered include waste processing, transmutation and decommissioning. Part Three consider potential management schemes for special waste from innovative sources, and wastes that contain emerging contaminants, including waste recycling opportunities. Nuclear Waste Management Facilities: Advances, Environmental Impacts, and Future Prospects is a crucial tool needed to implement the safest and most environmentally considerate best practices within nuclear waste management facilities. - Presents recent approaches used to assess and improve the safety and reduce the environmental impacts of nuclear waste management facilities - Offers technical guidance to support the development and defense of the environmental impact assessment (EIA) and Safety Cases to support the waste management facilities licensing throughout their lifecycles - Highlights the future perspectives for wastes produced from innovative reactors and wastes containing emerging contaminants, and recycling opportunities
Advanced separations technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing techniques not only allow for recycling of useful fuel components for further power generation, but by also separating out the actinides, lanthanides and other fission products produced by the nuclear reaction, the residual radioactive waste can be minimised. Indeed, the future of the industry relies on the advancement of separation and transmutation technology to ensure environmental protection, criticality-safety and non-proliferation (i.e., security) of radioactive materials by reducing their long-term radiological hazard.Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment provides a comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment. Part one covers the fundamental chemistry, engineering and safety of radioactive materials separations processes in the nuclear fuel cycle, including coverage of advanced aqueous separations engineering, as well as on-line monitoring for process control and safeguards technology. Part two critically reviews the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment. The section includes discussions of advanced PUREX processes, the UREX+ concept, fission product separations, and combined systems for simultaneous radionuclide extraction. Part three details emerging and innovative treatment techniques, initially reviewing pyrochemical processes and engineering, highly selective compounds for solvent extraction, and developments in partitioning and transmutation processes that aim to close the nuclear fuel cycle. The book concludes with other advanced techniques such as solid phase extraction, supercritical fluid and ionic liquid extraction, and biological treatment processes.With its distinguished international team of contributors, Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment is a standard reference for all nuclear waste management and nuclear safety professionals, radiochemists, academics and researchers in this field. - A comprehensive and timely reference on nuclear fuel reprocessing and radioactive waste treatment - Details emerging and innovative treatment techniques, reviewing pyrochemical processes and engineering, as well as highly selective compounds for solvent extraction - Discusses the development and application of separation and extraction processes for nuclear fuel reprocessing and radioactive waste treatment
This open access book discusses the eroding economics of nuclear power for electricity generation as well as technical, legal, and political acceptance issues. The use of nuclear power for electricity generation is still a heavily disputed issue. Aside from technical risks, safety issues, and the unsolved problem of nuclear waste disposal, the economic performance is currently a major barrier. In recent years, the costs have skyrocketed especially in the European countries and North America. At the same time, the costs of alternatives such as photovoltaics and wind power have significantly decreased.
Originally published in 1983, this book presents both the technical and political information necessary to evaluate the emerging threat to world security posed by recent advances in uranium enrichment technology. Uranium enrichment has played a relatively quiet but important role in the history of efforts by a number of nations to acquire nuclear weapons and by a number of others to prevent the proliferation of nuclear weapons. For many years the uranium enrichment industry was dominated by a single method, gaseous diffusion, which was technically complex, extremely capital-intensive, and highly inefficient in its use of energy. As long as this remained true, only the richest and most technically advanced nations could afford to pursue the enrichment route to weapon acquisition. But during the 1970s this situation changed dramatically. Several new and far more accessible enrichment techniques were developed, stimulated largely by the anticipation of a rapidly growing demand for enrichment services by the world-wide nuclear power industry. This proliferation of new techniques, coupled with the subsequent contraction of the commercial market for enriched uranium, has created a situation in which uranium enrichment technology might well become the most important contributor to further nuclear weapon proliferation. Some of the issues addressed in this book are: A technical analysis of the most important enrichment techniques in a form that is relevant to analysis of proliferation risks; A detailed projection of the world demand for uranium enrichment services; A summary and critique of present institutional non-proliferation arrangements in the world enrichment industry, and An identification of the states most likely to pursue the enrichment route to acquisition of nuclear weapons.
The 1990s saw significant developments in the global non-proliferation landscape, resulting in a new period of safeguards development. The current publication, which is the second revision and update of IAEA/NVS/1, is intended to give a full and balanced description of the safeguards techniques and equipment used for nuclear material accountancy, containment and surveillance measures, environmental sampling, and data security. New features include a section on new and novel technologies. As new verification measures continue to be developed, the material in this book will be reviewed periodically and updated versions issued.