Download Free Advanced Schemes For Surface Plasmon Resonance And Plasmon Enhanced Fluorescence Biosensors Book in PDF and EPUB Free Download. You can read online Advanced Schemes For Surface Plasmon Resonance And Plasmon Enhanced Fluorescence Biosensors and write the review.

Advanced optical biosensor platforms exploiting long range surface plasmons (LRSPs) and responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix for the detection of protein and bacterial pathogen analytes were carried out. LRSPs are optical waves that originate from coupling of surface plasmons on the opposite sites of a thin metallic film embedded between two dielectrics with similar refractive indices. LRSPs exhibit orders of magnitude lower damping and more extended profile of field compared to regular surface plasmons (SPs). Their excitation is accompanied with narrow resonance and provides stronger enhancement of electromagnetic field intensity that can advance the sensitivity of surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensors. Firstly, we investigated thin gold layers deposited on fluoropolymer surface for the excitation of LRSPs. The study indicates that the morphological, optical and electrical properties of gold film can be changed by the surface energy of fluoropolymer and affect the performance of a SPFS biosensor. A photo-crosslinkable NIPAAm hydrogel was grafted to the sensor surface in order to serve as a binding matrix. It was modified with bio-recognition elements (BREs) via amine coupling chemistry and offered the advantage of large binding capacity, stimuli responsive properties and good biocompatibility. Through experimental observations supported by numerical simulations describing diffusion mass transfer and affinity binding of target molecules in the hydrogel, the hydrogel binding matrix thickness, concentration of BREs and the profile of the probing evanescent field was optimized. Hydrogel with a up to micrometer thickness was shown to support additional hydrogel optical waveguide (HOW) mode which was employed for probing affinity binding events in the gel by means of refractometric and fluorescence measurements. These schemes allow to reach limits of detection (LODs) at picomo.
Explains the principles and current thinking behind plasmon enhanced Fluorescence Describes the current developments in Surface Plasmon Enhanced, Coupled and Controlled Fluorescence Details methods used to understand solar energy conversion, detect and quantify DNA more quickly and accurately, and enhance the timeliness and accuracy of digital immunoassays Contains contributions by the world’s leading scientists in the area of fluorescence and plasmonics Describes detailed experimental procedures for developing both surfaces and nanoparticles for applications in metal-enhanced fluorescence
Discover how metal-enhanced fluorescence is changing traditional concepts of fluorescence This book collects and analyzes all the current trends, opinions, and emerging hot topics in the field of metal-enhanced fluorescence (MEF). Readers learn how this emerging technology enhances the utility of current fluorescence-based approaches. For example, MEF can be used to better detect and track specific molecules that may be present in very low quantities in either clinical samples or biological systems. Author Chris Geddes, a noted pioneer in the field, not only explains the fundamentals of metal-enhanced fluorescence, but also the significance of all the most recent findings and models in the field. Metal-enhanced fluorescence refers to the use of metal colloids and nanoscale metallic particles in fluorescence systems. It offers researchers the opportunity to modify the basic properties of fluorophores in both near- and far-field fluorescence formats. Benefits of metal-enhanced fluorescence compared to traditional fluorescence include: Increased efficiency of fluorescence emission Increased detection sensitivity Protect against fluorophore photobleaching Applicability to almost any molecule, including both intrinsic and extrinsic chromophores Following a discussion of the principles and fundamentals, the author examines the process and applications of metal-enhanced fluorescence. Throughout the book, references lead to the primary literature, facilitating in-depth investigations into particular topics. Guiding readers from the basics to state-of-the-technology applications, this book is recommended for all chemists, physicists, and biomedical engineers working in the field of fluorescence.
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events and with the biosensor field expanding more applications are being found. In response to the market, an update to the original title which was published in 2008 is now appropriate. With over fifty percent of the material being updated, this book provides a total system description including optics, fluidics and sensor surfaces. Spanning theory, instrumentation and applications, it covers all the relevant issues for the practicing researcher. Unlocking the potential for SPR by showing highly exciting and unique opportunities for unraveling the functional relationships of complex biological processes, it is intended for a wide audience. A comprehensive and accessible source it contains expanded tutorial details to inspire students and guide them in this technology.
This book covers the theory and fabrication of plasmonic nanostructures, patterned surfaces, and devices for lossy mode resonance (LMR), surface plasmon resonance (SPR), surface-enhanced fluorescence spectroscopy (SEFS), and surface-enhanced Raman scattering (SERS)-based biosensors. The chapters in this book cover a range of topics, including the interplay between SPR and lossy mode resonance, fabrication of LSPR substrates using high-throughput techniques, recent advances in various nanostructures, recent developments in the field of nanostructured Ag substrates, and innovative advances in biosensors based on DNA nanotechnology. These chapters provide a comprehensive overview of recent developments in plasmonic biosensors, making this book essential reading for researchers working in biosensors and plasmonics.
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events. This book focuses on a total system description including optics, fluidics and sensor surfaces. It covers all commercial SPR systems in the market. It is the first of its kind and fills a gap in the technical literature as no other handbook on SPR is currently available. The final chapter discussed new trends and a vision is given for future developments and needs of the SPR market. This excellent handbook provides comprehensive information with easy to use, stand-alone chapters and will be of great use to anyone one working with or affiliated to the technology.
This book gives a comprehensive overview of recent advancements in both theory and practical implementation of plasmonic probes. Encompassing multiple disciplines, the field of plasmonics provides a versatile and flexible platform for nanoscale sensing and imaging. Despite being a relatively young field, plasmonic probes have come a long way, with applications in chemical, biological, civil, and architectural fields as well as enabling many analytical schemes such as immunoassay, biomarkers, environmental indexing, and water quality sensing, to name but a few. The objective of the book is to present in-depth analysis of the theory and applications of novel probes based on plasmonics, with a broad selection of specially-invited chapters on the development, fabrication, functionalization, and implementation of plasmonic probes as well as their integration with current technologies and future outlook. This book is designed to cater to the needs of novice, seasoned researchers and practitioners in academia and industry, as well as medical and environmental fields.
This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.
Plasmonic Sensors and their Applications A practically-focused reference and guide on the use of plasmonic sensing as a faster and cheaper alternative to conventional sensing platforms Plasmons, the collective oscillations of electrons occurring at the interface between any two materials, are sensitive to changes in dielectric properties near metal surfaces. Plasmonic sensors enable the real-time study of unique surface properties by monitoring the effect of the material interaction at the sensor surface. Plasmonic sensing techniques offer fast, label-free analysis, and hold advantages over labelling techniques such as ELISA (enzyme-linked immunosorbent assay). Plasmonic Sensors and their Applications examines the development and use of highly sensitive and selective plasmonic sensing platforms in chemistry, biotechnology, and medicine. Contributions by an international panel of experts provide timely and in-depth coverage of both real-world applications and academic research in the dynamic field. The authors describe advances in nanotechnology, polymer chemistry, and biomedicine, explore new and emerging applications of plasmonic sensing, discuss future trends and potential research directions, and more. This authoritative volume: Demonstrates why plasmonic sensing is a profitable method for easy and label-free analysis in real-time Covers a variety of applications of plasmonic sensors, such as disease diagnostics, vitamin detection, and detection of chemical and biological warfare agents Includes a brief introduction to the history and development of plasmonic sensors Provides concise theory and background for every application covered in the text Plasmonic Sensors and their Applications is an invaluable resource for analytical chemists, biochemists, biotechnologists, protein and surface chemists, and advanced students of biotechnology.