Download Free Advanced Sampling Methods Book in PDF and EPUB Free Download. You can read online Advanced Sampling Methods and write the review.

This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.
This book is a multi-purpose document. It can be used as a text by teachers, as a reference manual by researchers, and as a practical guide by statisticians. It covers 1165 references from different research journals through almost 1900 citations across 1194 pages, a large number of complete proofs of theorems, important results such as corollaries, and 324 unsolved exercises from several research papers. It includes 159 solved, data-based, real life numerical examples in disciplines such as Agriculture, Demography, Social Science, Applied Economics, Engineering, Medicine, and Survey Sampling. These solved examples are very useful for an understanding of the applications of advanced sampling theory in our daily life and in diverse fields of science. An additional 173 unsolved practical problems are given at the end of the chapters. University and college professors may find these useful when assigning exercises to students. Each exercise gives exposure to several complete research papers for researchers/students.
Whenweagreedtoshareallofourpreparationofexercisesinsamplingtheory to create a book, we were not aware of the scope of the work. It was indeed necessary to compose the information, type out the compilations, standardise the notations and correct the drafts. It is fortunate that we have not yet measured the importance of this project, for this work probably would never have been attempted! In making available this collection of exercises, we hope to promote the teaching of sampling theory for which we wanted to emphasise its diversity. The exercises are at times purely theoretical while others are originally from real problems, enabling us to approach the sensitive matter of passing from theory to practice that so enriches survey statistics. The exercises that we present were used as educational material at the École Nationale de la Statistique et de l’Analyse de l’Information (ENSAI), where we had successively taught sampling theory. We are not the authors of all the exercises. In fact, some of them are due to Jean-Claude Deville and Laurent Wilms. We thank them for allowing us to reproduce their exercises. It is also possible that certain exercises had been initially conceived by an author that we have not identi?ed. Beyondthe contribution of our colleagues, and in all cases, we do not consider ourselves to be the lone authors of these exercises:they actually form part of a common heritagefrom ENSAI that has been enriched and improved due to questions from students and the work of all the demonstrators of the sampling course at ENSAI.
Sampling is fundamental to nearly every study in the social and policy sciences, yet clear, concise guidance for practitioners and graduate students has been difficult to find. Practical Sampling provides guidance for researchers dealing with the everyday problems of sampling. Using the practical design approach Henry integrates sampling into the overall research design and explains the interrelationships between research design and sampling choices. He lays out alternatives and implications of the choices using four detailed examples to illustrate the alternatives selected and the trade-offs made by applied researchers. The author uses a narrative, conceptual approach throughout the book; mathematical presentations are limited to necessary formulas; and calculations are kept to the absolute minimum, making it an easily approachable book for any researcher, student or professional across the social sciences.
This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the links and interplay between ostensibly diverse techniques.
Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling. The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students. - Covers a wide spectrum of topics on survey sampling and statistics - Serves as an ideal text for graduate students and researchers in survey sampling theory and applications - Contains material on recent developments in survey sampling not covered in other books - Illustrates theories using numerical examples and exercises
A comprehensive expose of basic and advanced sampling techniques along with their applications in the diverse fields of science and technology.
The three parts of this book on survey methodology combine an introduction to basic sampling theory, engaging presentation of topics that reflect current research trends, and informed discussion of the problems commonly encountered in survey practice. These related aspects of survey methodology rarely appear together under a single connected roof, making this book a unique combination of materials for teaching, research and practice in survey sampling. Basic knowledge of probability theory and statistical inference is assumed, but no prior exposure to survey sampling is required. The first part focuses on the design-based approach to finite population sampling. It contains a rigorous coverage of basic sampling designs, related estimation theory, model-based prediction approach, and model-assisted estimation methods. The second part stems from original research conducted by the authors as well as important methodological advances in the field during the past three decades. Topics include calibration weighting methods, regression analysis and survey weighted estimating equation (EE) theory, longitudinal surveys and generalized estimating equations (GEE) analysis, variance estimation and resampling techniques, empirical likelihood methods for complex surveys, handling missing data and non-response, and Bayesian inference for survey data. The third part provides guidance and tools on practical aspects of large-scale surveys, such as training and quality control, frame construction, choices of survey designs, strategies for reducing non-response, and weight calculation. These procedures are illustrated through real-world surveys. Several specialized topics are also discussed in detail, including household surveys, telephone and web surveys, natural resource inventory surveys, adaptive and network surveys, dual-frame and multiple frame surveys, and analysis of non-probability survey samples. This book is a self-contained introduction to survey sampling that provides a strong theoretical base with coverage of current research trends and pragmatic guidance and tools for conducting surveys.
Written for students and researchers who wish to understand the conceptual and practical aspects of sampling, this book is designed to be accessible without requiring advanced statistical training. It covers a wide range of topics, from the basics of sampling to special topics such as sampling rare populations, sampling organizational populations, and sampling visitors to a place. Using cases and examples to illustrate sampling principles and procedures, the book thoroughly covers the fundamentals of modern survey sampling, and addresses recent changes in the survey environment such as declining response rates, the rise of Internet surveys, the need to accommodate cell phones in telephone surveys, and emerging uses of social media and big data.
Written for students taking research methods courses, this text provides a thorough overview of sampling principles. The author gives detailed, nontechnical descriptions and guidelines with limited presentation of formulas to help students reach basic research decisions, such as whether to choose a census or a sample, as well as how to select sample size and sample type. Intended for students and researchers in the social and behavioral sciences, public health research, marketing research, and related areas, the text provides nonstatisticians with the concepts and techniques they need to do quality work and make good sampling choices.