Download Free Advanced Research Instrumentation And Facilities Book in PDF and EPUB Free Download. You can read online Advanced Research Instrumentation And Facilities and write the review.

In recent years, the instrumentation needs of the nation's research communities have changed and expanded. The need for particular instruments has become broader, crossing scientific and engineering disciplines. The growth of interdisciplinary research that focuses on problems defined outside the boundaries of individual disciplines demands more instrumentation. Instruments that were once of interest only to specialists are now required by a wide array of scientists to solve critical research problems. The need for entirely new types of instrumentsâ€"such as distributed networks, cybertools, and sensor arraysâ€"is increasing. Researchers are increasingly dependent on advanced instruments that require highly specialized knowledge and training for their proper operation and use. The National Academies Committee on Science, Engineering, and Public Policy Committee on Advanced Research Instrumentation was asked to describe the current programs and policies of the major federal research agencies for advanced research instrumentation, the current status of advanced mid-sized research instrumentation on university campuses, and the challenges faced by each. The committee was then asked to evaluate the utility of existing federal programs and to determine the need for and, if applicable, the potential components of an interagency program for advanced research instrumentation.
The first U. S. Army Natick Research, Development and Engineering Center Atomic Force/Scanning Tunneling Microscopy (AFM/STM) Symposium was held on lune 8-10, 1993 in Natick, Massachusetts. This book represents the compilation of the papers presented at the meeting. The purpose ofthis symposium was to provide a forum where scientists from a number of diverse fields could interact with one another and exchange ideas. The various topics inc1uded application of AFM/STM in material sciences, polymers, physics, biology and biotechnology, along with recent developments inc1uding new probe microscopies and frontiers in this exciting area. The meeting's format was designed to encourage communication between members of the general scientific community and those individuals who are at the cutting edge of AFM, STM and other probe microscopies. It immediately became clear that this conference enabled interdisciplinary interactions among researchers from academia, industry and government, and set the tone for future collaborations. Expert scientists from diverse scientific areas including physics, chemistry, biology, materials science and electronics were invited to participate in the symposium. The agenda of the meeting was divided into three major sessions. In the first session, Biological Nanostructure, topics ranged from AFM ofDNA to STM imagmg ofthe biomoleeule tubulin and bacterialluciferase to the AFM of starch polymer double helices to AFM imaging of food surfaces.
In a world where advanced knowledge is widespread and low-cost labor is readily available, U.S. advantages in the marketplace and in science and technology have begun to erode. A comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas. This congressionally requested report by a pre-eminent committee makes four recommendations along with 20 implementation actions that federal policy-makers should take to create high-quality jobs and focus new science and technology efforts on meeting the nation's needs, especially in the area of clean, affordable energy: 1) Increase America's talent pool by vastly improving K-12 mathematics and science education; 2) Sustain and strengthen the nation's commitment to long-term basic research; 3) Develop, recruit, and retain top students, scientists, and engineers from both the U.S. and abroad; and 4) Ensure that the United States is the premier place in the world for innovation. Some actions will involve changing existing laws, while others will require financial support that would come from reallocating existing budgets or increasing them. Rising Above the Gathering Storm will be of great interest to federal and state government agencies, educators and schools, public decision makers, research sponsors, regulatory analysts, and scholars.
Modern materials science builds on knowledge from physics, chemistry, biology, mathematics, computer and data science, and engineering sciences to enable us to understand, control, and expand the material world. Although it is anchored in inquiry-based fundamental science, materials research is strongly focused on discovering and producing reliable and economically viable materials, from super alloys to polymer composites, that are used in a vast array of products essential to today's societies and economies. Frontiers of Materials Research: A Decadal Survey is aimed at documenting the status and promising future directions of materials research in the United States in the context of similar efforts worldwide. This third decadal survey in materials research reviews the progress and achievements in materials research and changes in the materials research landscape over the last decade; research opportunities for investment for the period 2020-2030; impacts that materials research has had and is expected to have on emerging technologies, national needs, and science; and challenges the enterprise may face over the next decade.
The Materials Research Science and Engineering Centers (MRSEC) Impact Assessment Committee was convened by the National Research Council in response to an informal request from the National Science Foundation. Charged to examine the impact of the MRSEC program and to provide guidance for the future, the committee included experts from across materials research as well as several from outside the field. The committee developed a general methodology to examine the MRSEC centers and after extensive research and analysis, came to the following conclusions. MRSEC center awards continue to be in great demand. The intense competition within the community for them indicates a strong perceived value. Using more quantitative measures, the committee examined the performance and impact of MRSEC activities over the past decade in the areas of research, facilities, education and outreach, and industrial collaboration and technology transfer. The MRSEC program has had important impacts of the same high standard of quality as those of other multi-investigator or individual-investigator programs. Although the committee was largely unable to attribute observed impacts uniquely to the MRSEC program, MRSECs generally mobilize efforts that would not have occurred otherwise. Because of an observed decline in the effectiveness of the centers, the committee recommended a restructuring the MRSEC program to allow more efficient use and leveraging of resources. The new program should fully invest in centers of excellence as well as in stand-alone teams of researchers to allow tighter focus on key strengths of the program. In its report, the committee outlines one potential vision for how this might be accomplished in a revenue-neutral fashion.
Science and technology are responsible for almost every advance in our modern quality of life. Yet science isn't just about laboratories, telescopes and particle accelerators. Public policy exerts a huge impact on how the scientific community conducts its work. Beyond Sputnik is a comprehensive survey of the field for use as an introductory textbook in courses and a reference guide for legislators, scientists, journalists, and advocates seeking to understand the science policy-making process. Detailed case studies---on topics from cloning and stem cell research to homeland security and science education---offer readers the opportunity to study real instances of policymaking at work. Authors and experts Homer A. Neal, Tobin L. Smith, and Jennifer B. McCormick propose practical ways to implement sound public policy in science and technology and highlight how these policies will guide the results of scientific discovery for years to come. Homer A. Neal is the Samuel A. Goudsmit Distinguished University Professor of Physics, Interim President Emeritus, and Vice President for Research Emeritus at the University of Michigan, and is a former member of the U.S. National Science Board. Tobin L. Smith is Associate Vice President for Federal Relations at the Association of American Universities. He was formerly Assistant Director of the University of Michigan and MIT Washington, DC, offices. Jennifer B. McCormick is an Assistant Professor of Biomedical Ethics in the Division of General Internal Medicine at the Mayo College of Medicine in Rochester, Minnesota, and is the Associate Director of the Research Ethics Resource, part of the Mayo Clinic's NIH Clinical Translational Science Award research programs. GO BEYOND SPUTNIK ONLINE--Visit www.science-policy.net for the latest news, teaching resources, learning guides, and internship opportunities in the 21st-Century field of science policy.
Most of the instruments now used for materials research are too complex and expensive for individual investigators to own, operate, and maintain them. Consequently, they have become increasingly consolidated into multi-user, small to midsized research facilities, located at many sites around the country. The proliferation of these facilities, however, has drawn calls for a careful assessment of best principles for their operation. With support from the Department of Energy and the National Science Foundation, the NRC carried out a study to characterize and discuss ways to optimize investments in materials research facility infrastructure with attention to midsize facilities. This report provides an assessment of the nature and importance of mid-sized facilities, their capabilities, challenges they face, current investment, and optimizing their effectiveness.