Download Free Advanced Photonics Metasurfaces Design Fabrication And Applications Book in PDF and EPUB Free Download. You can read online Advanced Photonics Metasurfaces Design Fabrication And Applications and write the review.

This book highlights recent advances in thin-film photonics, particularly as building blocks of metamaterials and metasurfaces. Recent advances in nanophotonics has demonstrated remarkable control over the electromagnetic field by tailoring the optical properties of materials at the subwavelength scale which results in the emergence of metamaterials and metasurfaces. However, most of the proposed platforms require intense lithography which makes them of minor practical relevance. Stacked ultrathin-films of dielectrics, semi-conductors, and metals are introduced as an alternative platform that perform unique or similar functionalities. This book discusses the new era of thin film photonics and its potential applications in perfect and selective light absorption, structural coloring, biosensing, enhanced spontaneous emission, reconfigurable photonic devices and super lensing.​
The merging of metasurface and holography brings about unprecedented opportunities for versatile manipulation of light in terms of both far-field wavefront and near-field profile. In this book, a brief evolving history from surface plasmon polariton holography to metamaterial holography and finally to metasurface holography is introduced at first. Basic physical mechanisms that govern the phase modulation rules behind metasurface holography design are discussed later. Next, extended functionalities such as arbitrary polarization holography, vectorial holography, full-color holography, and hybrid holography achieved in the metasurface platform are presented. Surface wave and metagrating holography that bridges the on-chip surface wave and free-space wave is also introduced. In the end, we envisage practical applications of high-fidelity 3D holographic display, high-secure encryption, and high capacity digital encoding and also indicate remaining challenges based on metasurface holography.
Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.
Advances in Nonlinear Photonics combines fundamental principles with an overview of the latest developments. The book is suitable for the multidisciplinary audience of photonics researchers and practitioners in academia and R&D, including materials scientists and engineers, applied physicists, chemists, etc. As nonlinear phenomena are at the core of photonic devices and may enable future applications such as all-optical switching, all-optical signal processing and quantum photonics, this book provides an overview of key concepts. In addition, the book reviews the most important advances in the field and how nonlinear processes may be exploited in different photonic applications. - Introduces fundamental principles of nonlinear phenomena and their application in materials and devices - Reviews and provides definitions of the latest research directions in the field of nonlinear photonics - Discusses the most important developments in materials and applications, including future prospects
This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.
This book is a printed edition of the Special Issue "Metasurfaces: Physics and Applications" that was published in Applied Sciences
Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.
This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.
Learn more about foundational and advanced topics in polymer thin films and coatings besides species with this powerful two-volume resource The two-volume Inorganic and Organic Thin Films: Fundamentals, Fabrication, and Applications delivers a foundational resource for current researchers and commercial users involved in the design and fabrication of thin films. The book offers newcomers to the field a thorough description of new design theory, fabrication methods, and applications of advanced thin films. Readers will discover the physics and chemistry underlying the manufacture of new thin films and coatings in this leading new resource that promises to become a handbook for future applications of the technology. This one-stop reference brings together all important aspects of inorganic and polymeric thin films and coatings, including construction, assembly, deposition, functionality, patterning, and characterization. Explorations of their applications in industries as diverse as information technology, new energy, biomedical engineering, aerospace, and oceanographic engineering round out this fulsome exploration of one of the most exciting and rapidly developing areas of scientific and industrial research today. Readers will also learn from: A comprehensive introduction to the progress of thin films and coatings as well as fundamentals in functional thin films and coatings An exploration of multi-layered magnetic thin films for electron transport control and signal sensing, including giant magnetoresistance, colossal magnetoresistance, tunneling magnetoresistance, and the quantum anomalous Holzer effect An in time summary of high-quality magneto-optics, nanophotonics, spin waves and spintronics using bismuth-substituted iron garnet thin films as examples A thorough discussion of template-assisted fabrication of nanostructure thin films for ultrasensitive detection of chemicals and biomolecules A treatment of biomass derived functional films and coatings Perfect for materials scientists and inorganic chemists, Inorganic and Organic Thin Films will also earn a place in the libraries of solid state physicists and physical chemists working in private industry, as well as polymer and surface chemists who seek to improve their understanding of thin films and coatings.