Download Free Advanced Optimization Techniques And Examples With Matlab Book in PDF and EPUB Free Download. You can read online Advanced Optimization Techniques And Examples With Matlab and write the review.

Optimization and decision making are integral parts of any manufacturing process and management system. The objective of this book is to demonstrate the confluence of theory and applications of various types of multi-criteria decision making and optimization techniques with reference to textile manufacturing and management. Divided into twelve chapters, it discusses various multi-criteria decision-making methods such as AHP, TOPSIS, ELECTRE, and optimization techniques like linear programming, fuzzy linear programming, quadratic programming, in textile domain. Multi-objective optimization problems have been dealt with two approaches, namely desirability function and evolutionary algorithm. Key Features Exclusive title covering textiles and soft computing fields including optimization and decision making Discusses concepts of traditional and non-traditional optimization methods with textile examples Explores pertinent single-objective and multi-objective optimizations Provides MATLAB coding in the Appendix to solve various types of multi-criteria decision making and optimization problems Includes examples and case studies related to textile engineering and management
This textbook is designed for students and industry practitioners for a first course in optimization integrating MATLAB® software.
In this revised and enhanced second edition of Optimization Concepts and Applications in Engineering, the already robust pedagogy has been enhanced with more detailed explanations, an increased number of solved examples and end-of-chapter problems. The source codes are now available free on multiple platforms. It is vitally important to meet or exceed previous quality and reliability standards while at the same time reducing resource consumption. This textbook addresses this critical imperative integrating theory, modeling, the development of numerical methods, and problem solving, thus preparing the student to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multiobjective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses and for practising engineers in all engineering disciplines, as well as in applied mathematics.
While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.
Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral role in computer-aided design. Fundamentals of Optimization Techniques with Algorithms presents a complete package of various traditional and advanced optimization techniques along with a variety of example problems, algorithms and MATLAB© code optimization techniques, for linear and nonlinear single variable and multivariable models, as well as multi-objective and advanced optimization techniques. It presents both theoretical and numerical perspectives in a clear and approachable way. In order to help the reader apply optimization techniques in practice, the book details program codes and computer-aided designs in relation to real-world problems. Ten chapters cover, an introduction to optimization; linear programming; single variable nonlinear optimization; multivariable unconstrained nonlinear optimization; multivariable constrained nonlinear optimization; geometric programming; dynamic programming; integer programming; multi-objective optimization; and nature-inspired optimization. This book provides accessible coverage of optimization techniques, and helps the reader to apply them in practice. - Presents optimization techniques clearly, including worked-out examples, from traditional to advanced - Maps out the relations between optimization and other mathematical topics and disciplines - Provides systematic coverage of algorithms to facilitate computer coding - Gives MATLAB© codes in relation to optimization techniques and their use in computer-aided design - Presents nature-inspired optimization techniques including genetic algorithms and artificial neural networks
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
This easy-to-follow guide provides academics and industrial engineers with a state-of-the-art numerical approach to the most frequent technical and economical optimization methods. In an engaging manner, it provides the reader with not only a systematic and comprehensive study, but also with necessary and directly implementable code written in the versatile and readily available platform Matlab. The book offers optimization methods for univariate and multivariate constrained or unconstrained functions, general optimization methods and multicriteria optimization methods; provides intuitively, step-by-step explained sample Matlab code, that can be easily adjusted to meet individual requirements; and uses a clear, concise presentation style, which will be suited to readers even without a programming background, as well as to students preparing for examinations in optimization methods.
Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.
Nonlinear Optimization in Electrical Engineering with Applications in MATLAB® provides an introductory course on nonlinear optimization in electrical engineering, with a focus on applications such as the design of electric, microwave, and photonic circuits, wireless communications, and digital filter design.
The MATLAB programming environment is often perceived as a platform suitable for prototyping and modeling but not for "serious" applications. One of the main complaints is that MATLAB is just too slow. Accelerating MATLAB Performance aims to correct this perception by describing multiple ways to greatly improve MATLAB program speed. Packed with tho