Download Free Advanced Nanotechnology And Application Of Supercritical Fluids Book in PDF and EPUB Free Download. You can read online Advanced Nanotechnology And Application Of Supercritical Fluids and write the review.

Globalization and industrialization involve a number of reactions, products, extractions, and separations that require the use of organic solvents. These solvents are responsible for a number of ecological concerns, including atmospheric and land toxicity. Conventional organic solvents are regarded as volatile organic compounds; some are even limited due to their potential for ozone layer depletion. While supercritical liquids exhibit physical properties that could make them ideal substitutes for these volatile compounds, there is particular interest in the use of carbon dioxide as a solvent of crude material. In particular, carbon dioxide has apparent ‘green’ properties, like its noncombustible nature, the fact that it is generally nonpoisonous, and its relative inertness. Thus, the use of supercritical carbon dioxide can provide practical improvements to the sustainability of industrial products and processes. This book provides in-depth literature in the area of industrial green processes, focusing on the separation, purification, and extraction of compounds utilizing supercritical carbon dioxide as a green solvent.
Ayurvedic medicine and its components have been well described in the past but this book represents a comprehensive source on the biochemistry and mechanisms of pharmacological effect of ayurvedic sources. This book is a valuable resource for researchers in natural products and alternative sources of bioactive compounds in drug discovery.
Using SuperCritical Fluids (SCFs) in various processes is not new, because Mother Nature has been processing minerals in aqueous solutions at critical and supercritical pressures for billions of years. Somewhere in the 20th century, SCFs started to be used in various industries as working fluids, coolants, chemical agents, etc. Written by an international team of experts and complete with the latest research, development, and design, Advanced Supercritical Fluids Technologies is a unique technical book, completely dedicated to modern and advanced applications of supercritical fluids in various industries.Advanced Supercritical Fluids Technologies provides engineers and specialists in various industries dealing with SCFs as well as researchers, scientists, and students of the corresponding departments with a comprehensive overview of the current status, latest trends and developments of these technologies.Dr Igor Pioro is a professor at the University of Ontario Institute of Technology, Canada, and the Founding Editor of the ASME Journal of Nuclear Engineering and Radiation Science.
Sustainable Nanotechnology A robust examination of the use of nanotechnology in the manufacture of sustainable products In Sustainable Nanotechnology: Strategies, Products, and Applications, a team of distinguished researchers delivers a comprehensive and up-to-date exploration of nanotechnology applications in environmental, pharmaceutical, and engineering products in the context of global sustainability. The book offers balanced coverage of the benefits and risks of nanotechnology. Divided into three parts, the editors have included contributions from leading scholars discussing sustainability, toxicological impacts, and nanomaterial-based adsorbents. This edited volume helps readers understand how nanotechnology and nanomaterials apply in different global sustainability challenges. It also discusses models for understanding the lifecycle and risk assessments of manufactured nanomaterials. Case studies are included to explore such topics as design, remediation, and technology assessment. The book also provides: Thorough introductions to nanotechnology-based research priorities for global sustainability and the challenges and opportunities of modern, sustainable nanotechnology Comprehensive explorations of improving the sustainability of bio-based products with nanotechnology and the improvement of the environmental sustainability of biopolymers using nanotechnology Practical discussions of nanotechnology-based polymers for drug delivery applications In-depth examinations of green nanotechnology-driven drug delivery systems Perfect for nanotechnology-focused professionals, sustainability experts, biomedical experts, and pharmaceutical industry practitioners, Sustainable Nanotechnology: Strategies, Products, and Applications will also earn a place in the libraries of neuroscientists, bioengineering professionals, and those involved in neuroprosthetic engineering.
Applications of Nanotechnology in Drug Discovery and Delivery, in the Drug Discovery Update series, presents complete coverage of the application of nanotechnology in the discovery of new drugs and efficient target delivery of drugs. The book highlights recent advances of nanotechnology applications in the biomedical sciences, starting with chapters that provide the basics of nanotechnology, nanoparticles and nanocarriers. Part II deals with the application of nanotechnology in drug discovery, with an emphasis on enhanced delivery of pharmaceutical products, with Part III discussing toxicological and safety issues arising from the use of nanomaterials. This book brings together a global team of experts, making it an essential resource for researchers, drug developers, medicinal chemists, toxicologists and analytical chemists. - Serves as a guide to drug developers working in pharma, biotech and academia, bringing together the latest research on the topic - Presents recent information on the use of nanomaterials for the development of drugs using engineered nanocarriers to target specific delivery - Features a global team of contributing experts who discuss nanotechnology applications in drug discovery as well as safety issues and challenges
Nanomaterials can be synthesized by physical, chemical, and biological methods; however, the latter technique is preferred as it is eco-friendly, non-toxic, and cost-effective. The green synthesized nanomaterials have been found to be more efficient with potential applications in diverse fields. It is crucial to explore green synthesized nanomaterials and the applications that can be made in order to support water remediation, pharmaceuticals, food processing, construction, and more. The Handbook of Research on Green Synthesis and Applications of Nanomaterials provides a multidisciplinary approach to the awareness of using non-toxic, eco-friendly, and economical green techniques for the synthesis of various nanomaterials, as well as their applications across a variety of fields. Covering topics such as antimicrobial applications, environmental remediation, and green synthesis, this book acts as a thorough reference for engineers, nanotechnology professionals, academicians, students, scientists, and researchers pursuing research in the nanotechnology field.
The reader will be introduced to various aspects of the fundamentals of nanotechnology based drug delivery systems and the application of these systems for the delivery of small molecules, proteins, peptides, oligonucleotides and genes. How these systems overcome challenges offered by biological barriers to drug absorption and drug targeting will also be described.
The environmental and climate program demands technological solutions in the chemical industry that incorporate prevention of pollution. Major advances are needed to reduce the use of organic solvents, such as methanol, toluene, xylene, methyl ethyl ketone, and dichloromethane, which account for 27 percent of total toxics release inventory chemical
Numerous solvents used in chemical processes have poisonous and unsafe properties that pose significant ecological concerns ranging from atmospheric emissions to the contamination of water effluents. To combat these ecological threats, over the course of the past two decades, the field of green chemistry has grown to develop more natural reaction processes and techniques involving the use of nonconventional solvents to diminish waste solvent production and thus decrease negative impact on the environment. Ionic liquids in particular are more environmentally friendly substitutes to conventional solvents, and as such, have seen more widespread use in the past decade. They have been used in such processes as extraction, separation, purification of organic, inorganic, and bioinorganic compounds, reaction media in biochemical and chemical catalysis, green organic and drug synthesis, among other industrial applications. Thus, in proving themselves a suitable greener media for economic viability in chemical processes, ionic liquids are leading to more sustainable development. This edition explores the application of ionic liquids as a green solvent. It contains a state-of-the-art overview on ionic liquids as green solvents for chemical processes and techniques, as well as some of their useful industrial applications.
This book provides an overview of nanoparticle production methods, scale-up issues drawing attention to industrial applicability, and addresses their successful applications for commercial use. There is a need for a reference book which will address various aspects of recent progress in the methods of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization. There is no consolidated reference book that discusses the emerging technologies for nanoparticle manufacturing. This book focuses on the following major aspects of emerging technologies for nano particle manufacturing. I. Introduction and Biomedical Applications of Nanoparticles II. Polymeric Nanoparticles III. Lipid Nanoparticles IV. Metallic Nanoparticles V. Quality Control for Nanoparticles VI. Challenges in Scale-Up Production of Nanoparticles VII. Injectable Nanosystems VIII. Future Directions and Challenges Leading scientists are selected as chapter authors who have contributed significantly in this field and they focus more on emerging technologies for nanoparticle manufacturing, future directions, and challenges.