Download Free Advanced Nanotechnology Book in PDF and EPUB Free Download. You can read online Advanced Nanotechnology and write the review.

Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them
Nanotechnology uses nanomaterials/nanoparticles that can penetrate plant cells and interact with intracellular organelles and metabolites impacting plant growth, development, physiology, and biochemistry. Advanced Nanotechnology in Plants: Methods and Applications explores emerging plant nanotechnology, covering advanced methods and applications with an emphasis on the mitigation of plant diseases and environmental stressors. This technology can lead to the improvement of crop quality and yield to face the challenge of global climate change with an expanding global population. Features: Summarizes advanced methods and current applications of nanotechnology to mitigate plant stress Supports the Paris Agreement, which tackles three main objectives for sustainably increasing agricultural productivity and incomes, adapting and building resilience to climate change, and reducing and/or removing greenhouse gas emissions Discusses potential uses and future directions in green nanotechnology for smart and sustainable agriculture The content fits the goals of the UN SDGs contributing to goals 12 and 15 for responsible consumption and production and sustainable use of terrestrial ecosystems Provides current research findings of engineered nanoparticles for phytoremediation This book is a reference for students, researchers, and scientists in the field of plant sciences and nanotechnology. It is also useful for those in green chemistry, and environmental sciences, and can be a practical handbook for academics, including teachers, students, and agricultural experts.
In this first comprehensive compilation of review chapters on this hot topic, more than 30 experts from around the world provide in-depth chapters on their specific areas of expertise, covering such essential topics as: * Block Copolymer Systems, Nanofibers and Nanotubes * Helical Polymer-Based Supramolecular Films * Synthesis of Inorganic Nanotubes * Gold Nanoparticles and Carbon Nanotubes * Recent Advances in Metal Nanoparticle-Attached Electrodes * Oxidation Catalysis by Nanoscale Gold, Silver, and Copper * Concepts in Self-Assembly * Nanocomposites * Amphiphilic Poly(Oxyalkylene)-Amines * Mesoporous Alumina * Nanoceramics for Medical Applications * Ecological Toxicology of Engineered Carbon Nanoparticles * Molecular Imprinting * Near-Field Raman Imaging of Nanostructures and Devices * Fullerene-Rich Nanostructures * Interactions of Carbon Nanotubes with Biomolecules * Nanoparticle-Cored Dendrimers and Hyperbranched Polymers * Nanostructured Organogels via Molecular Self-Assembly * Structural DNA Nanotechnology With its coverage of all such important areas as self-assembly, polymeric materials, bionanomaterials, nanotubes, photonic and environmental aspects, this is an essential reference for materials scientists, engineers, chemists, physicists and biologists wishing to gain an in-depth knowledge of all the disciplines involved.
Nanoscale science and technology have occupied centre stage globally in modern scientific research and discourses in the early twenty first century. The enabling nature of the technology makes it important in modern electronics, computing, materials, healthcare, energy and the environment. This volume contains selected articles presented (as Invited/Oral/Poster presentations) at the 2nd international conference on advanced materials and nanotechnology (ICANN-2011) held recently at the Indian Institute of Technology Guwahati, during Dec 8-10, 2011. The list of topics covered in this proceedings include: Synthesis and self assembly of nanomaterials Nanoscale characterisation Nanophotonics & Nanoelectronics Nanobiotechnology Nanocomposites F Nanomagnetism Nanomaterials for Energy Computational Nanotechnology Commercialization of Nanotechnology The conference was represented by around 400 participants from several countries including delegates invited from USA, Germany, Japan, UK, Taiwan, Italy, Singapore, India etc.
This book provides the fundamental aspects of bionanomaterials and bionanotechnology, and insight into the synthesis and modification of bionanomaterials in a detailed manner. It initiates with a general overview of biotechnology and nanotechnology followed by different strategies and methodologies for the synthesis of nanomaterials. Further, it discusses pertinent topics such as protein engineering, analysis, mechanisms of microbe- mediated nanosynthesis, followed by various challenges and innovation strategies, and the role of enzymes in bionanotechnology. Features: Covers the synthesis of bionanomaterials, including the interaction between nanomaterial and biogenic materials Encompasses the study of the connections between structure, molecular biology, and nanotechnology Explains several techniques (XRD, SEM, TEM, etc.) used for the analysis of bionanomaterials Includes prospects, challenges, and opportunities associated with bionanotechnology Reviews the interaction between nanomaterials and the biological system and self- assembly in bionanotechnology This book is aimed at graduate students and researchers in materials sciences, biotechnology, and bionanotechnology.
Globalization and industrialization involve a number of reactions, products, extractions, and separations that require the use of organic solvents. These solvents are responsible for a number of ecological concerns, including atmospheric and land toxicity. Conventional organic solvents are regarded as volatile organic compounds; some are even limited due to their potential for ozone layer depletion. While supercritical liquids exhibit physical properties that could make them ideal substitutes for these volatile compounds, there is particular interest in the use of carbon dioxide as a solvent of crude material. In particular, carbon dioxide has apparent ‘green’ properties, like its noncombustible nature, the fact that it is generally nonpoisonous, and its relative inertness. Thus, the use of supercritical carbon dioxide can provide practical improvements to the sustainability of industrial products and processes. This book provides in-depth literature in the area of industrial green processes, focusing on the separation, purification, and extraction of compounds utilizing supercritical carbon dioxide as a green solvent.
A comprehensive and multidisciplinary review of the fundamental concepts and medical applications of nanomaterials development technology Nanomedicine offers a range of multi-interdisciplinary approaches and brings together the field of chemistry, pharmaceutical science, biology, and clinical medicines by focusing on design and preparation of biodegradable or non-biodegradable biomaterials for their biological, medical, and pharmaceutical applications. Nanomaterials in Advanced Medicine reviews the concepts and applications of the combination of the technology of biology and engineering that are emerging as an integral aspect of today?s advanced medicine. Nanomedicine provides the technology for imaging, cancer treatment, medical tools, bone treatment, drug delivery, diagnostic tests, drug development, angiogenesis and aims to exploit the improved and often novel physical, chemical, and biological properties of materials at the nanometer scale. Designed to provide a broad survey of the field, Nanomaterials in Advanced Medicine is divided into three main sections: Nanophysics, Nanochemistry, and Nanomedicine. Each chapter describes in detail the most current and valuable methods available and contains numerous references to the primary literature. This important book: -Offers a field guide for biologists and physicians who want to explore the fascinating world of nanotechnology -Contains a comprehensive review of the topic from a noted expert in the field -Includes an introduction to nanotechnology and explores the synthesis, structure and properties of various types of nanobiomaterials -Bridges the gap between various aspects of nanomaterials? development technology and their applications Written for pharmaceutical chemists, biotechnologists, life scientists, materials scientists, polymer chemists, and biochemists, Nanomaterials in Advanced Medicine provides a must-have guide to the fundamental concepts and current applications of nanomaterials in the medical field.
This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
"Part of this book adapted from "Introduction aux nanosciences et aux nanotechnologies" published in France by Hermes Science/Lavoisier in 2006."