Download Free Advanced Mathematical Methods For Economic Efficiency Analysis Book in PDF and EPUB Free Download. You can read online Advanced Mathematical Methods For Economic Efficiency Analysis and write the review.

Economic efficiency analysis has received considerable worldwide attention in the last few decades, with Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) establishing themselves as the two dominant approaches in the literature. This book, by combining cutting-edge theoretical research on DEA and SFA with attractive real-world applications, offers a valuable asset for professors, students, researchers, and professionals working in all branches of economic efficiency analysis, as well as those concerned with the corresponding economic policies. The book is divided into three parts, the first of which is devoted to basic concepts, making the content self-contained. The second is devoted to DEA, and the third to SFA. The topics covered in Part 2 range from stochastic DEA to multidirectional dynamic inefficiency analysis, including directional distance functions, the elimination and choice translating algorithm, benefit-of-the-doubt composite indicators, and internal benchmarking for efficiency evaluations. Part 3 also includes exciting and cutting-edge theoretical research on e.g. robustness, nonparametric stochastic frontier models, hierarchical panel data models, and estimation methods like corrected ordinary least squares and maximum entropy.
In Mathematical Analysis and Optimization for Economists, the author aims to introduce students of economics to the power and versatility of traditional as well as contemporary methodologies in mathematics and optimization theory; and, illustrates how these techniques can be applied in solving microeconomic problems. This book combines the areas of intermediate to advanced mathematics, optimization, and microeconomic decision making, and is suitable for advanced undergraduates and first-year graduate students. This text is highly readable, with all concepts fully defined, and contains numerous detailed example problems in both mathematics and microeconomic applications. Each section contains some standard, as well as more thoughtful and challenging, exercises. Solutions can be downloaded from the CRC Press website. All solutions are detailed and complete. Features Contains a whole spectrum of modern applicable mathematical techniques, many of which are not found in other books of this type. Comprehensive and contains numerous and detailed example problems in both mathematics and economic analysis. Suitable for economists and economics students with only a minimal mathematical background. Classroom-tested over the years when the author was actively teaching at the University of Hartford. Serves as a beginner text in optimization for applied mathematics students. Accompanied by several electronic chapters on linear algebra and matrix theory, nonsmooth optimization, economic efficiency, and distance functions available for free on www.routledge.com/9780367759018.
The most interesting issues in environmental and resource economics have an explicit temporal dimension, since variables of interest such as pollutants, greenhouse gases, biomass of biological resources, or the stocks of fossil fuels accumulate in the ambient environment or are depleted through human actions and natural processes.The purpose of these lectures is to present the mathematical tools for analyzing environmental and resource management issues in a dynamic set-up.The lectures include a brief description of differential equations and then move on to describe methods of optimal control, dynamic programing, and differential games. The final chapters cover two novel topics: (1) environmental issues characterized by deep uncertainty, and aversion to ambiguity using robust control methods and formulations of precautionary policies; and (2) the study of pollution/resource management in space and time when the environmental variables evolve in time and diffuse in space.The lectures are a valuable tool for advanced graduate students in environmental and resource economics who are studying dynamic problems.
This book describes a system of mathematical models and methods that can be used to analyze real economic and managerial decisions and to improve their effectiveness. Application areas include: management of development and operation budgets, assessment and management of economic systems using an energy entropy approach, equation of exchange rates and forecasting foreign exchange operations, evaluation of innovative projects, monitoring of governmental programs, risk management of investment processes, decisions on the allocation of resources, and identification of competitive industrial clusters. The proposed methods and models were tested on the example of Kazakhstan’s economy, but the generated solutions will be useful for applications at other levels and in other countries. Regarding your book "Mathematical Methods and Models in Economics", I am impressed because now it is time when "econometrics" is becoming more appreciated by economists and by schools that are the hosts or employers of modern economists. ... Your presented results really impressed me. John F. Nash, Jr., Princeton University, Nobel Memorial Prize in Economic Sciences The book is within my scope of interest because of its novelty and practicality. First, there is a need for realistic modeling of complex systems, both natural and artificial that conclude computer and economic systems. There has been an ongoing effort in developing models dealing with complexity and incomplete knowledge. Consequently, it is clear to recognize the contribution of Mutanov to encapsulate economic modeling with emphasis on budgeting and innovation. Secondly, the method proposed by Mutanov has been verified by applying to the case of the Republic of Kazakhstan, with her vibrant emerging economy. Thirdly, Chapter 5 of the book is of particular interest for the computer technology community because it deals with innovation. In summary, the book of Mutanov should become one of the outstanding recognized pragmatic guides for dealing with innovative systems. Andrzej Rucinski, University of New Hampshire This book is unique in its theoretical findings and practical applicability. The book is an illuminating study based on an applied mathematical model which uses methods such as linear programming and input-output analysis. Moreover, this work demonstrates the author’s great insight and academic brilliance in the fields of finance, technological innovations and marketing vis-à-vis the market economy. From both theoretical and practical standpoint, this work is indeed a great achievement. Yeon Cheon Oh, President of Seoul National University
Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory
"Mathematical Optimization and Economic Analysis" is a self-contained introduction to various optimization techniques used in economic modeling and analysis such as geometric, linear, and convex programming and data envelopment analysis. Through a systematic approach, this book demonstrates the usefulness of these mathematical tools in quantitative and qualitative economic analysis. The book presents specific examples to demonstrate each technique’s advantages and applicability as well as numerous applications of these techniques to industrial economics, regulatory economics, trade policy, economic sustainability, production planning, and environmental policy. Key Features include: - A detailed presentation of both single-objective and multiobjective optimization; - An in-depth exposition of various applied optimization problems; - Implementation of optimization tools to improve the accuracy of various economic models; - Extensive resources suggested for further reading. This book is intended for graduate and postgraduate students studying quantitative economics, as well as economics researchers and applied mathematicians. Requirements include a basic knowledge of calculus and linear algebra, and a familiarity with economic modeling.
This textbook presents students with all they need for advancing in mathematical economics. Higher level undergraduates as well as postgraduate students in mathematical economics will find this book extremely useful.
This book presents a coherent and systematic exposition of the mathematical theory of the problems of optimization and stability. Both of these are topics central to economic analysis since the latter is so much concerned with the optimizing behaviour of economic agents and the stability of the interaction processes to which this gives rise. The topics covered include convexity, mathematical programming, fixed point theorems, comparative static analysis and duality, the stability of dynamic systems, the calculus of variations and optimal control theory. The authors present a more detailed and wide-ranging discussion of these topics than is to be found in the few books which attempt a similar coverage. Although the text deals with fairly advanced material, the mathematical prerequisites are minimised by the inclusion of an integrated mathematical review designed to make the text self-contained and accessible to the reader with only an elementary knowledge of calculus and linear algebra. A novel feature of the book is that it provides the reader with an understanding and feel for the kinds of mathematical techniques most useful for dealing with particular economic problems. This is achieved through an extensive use of a broad range of economic examples (rather than the numerical/algebraic examples so often found). This is suitable for use in advanced undergraduate and postgraduate courses in economic analysis and should in addition prove a useful reference work for practising economists.
Providing a systematic and comprehensive treatment of recent developments in efficiency analysis, this book makes available an intuitive yet rigorous presentation of advanced nonparametric and robust methods, with applications for the analysis of economies of scale and scope, trade-offs in production and service activities, and explanations of efficiency differentials.
Originally published in 1984. Since the logic underlying economic theory can only be grasped fully by a thorough understanding of the mathematics, this book will be invaluable to economists wishing to understand vast areas of important research. It provides a basic introduction to the fundamental mathematical ideas of topology and calculus, and uses these to present modern singularity theory and recent results on the generic existence of isolated price equilibria in exchange economies.