Download Free Advanced High Speed Devices Book in PDF and EPUB Free Download. You can read online Advanced High Speed Devices and write the review.

Advanced High Speed Devices covers five areas of advanced device technology: terahertz and high speed electronics, ultraviolet emitters and detectors, advanced III-V field effect transistors, III-N materials and devices, and SiC devices. These emerging areas have attracted a lot of attention and the up-to-date results presented in the book will be of interest to most device and electronics engineers and scientists. The contributors range from prominent academics, such as Professor Lester Eastman, to key US Government scientists, such as Dr Michael Wraback. Sample Chapter(s). Chapter 1: Simulation and Experimental Results on Gan Based Ultra-Short Planar Negative Differential Conductivity Diodes for THZ Power Generation (563 KB). Contents: Simulation and Experimental Results on GaN Basee Ultra-Short Planar Negative Differential Conductivity Diodes for THz Power Generation (B Aslan et al.); Millimeter Wave to Terahertz in CMOS (K K O S Sankaran et al.); Surface Acoustic Wave Propagation in GaN-On-Sapphire Under Pulsed Sub-Band Ultraviolet Illumination (V S Chivukula et al.); The First 70nm 6-Inch GaAs PHEMT MMIC Process (H Karimy et al.); Performance of MOSFETs on Reactive-Ion-Etched GaN Surfaces (K Tang et al.); GaN Transistors for Power Switching and Millimeter-Wave Applications (T Ueda et al.); Bi-Directional Scalable Solid-State Circuit Breakers for Hybrid-Electric Vehicles (D P Urciuoli & V Veliadis); and other papers. Readership: Electronic engineers, solid state physicists, graduate students studying physics or electrical engineering.
Advanced High Speed Devices covers five areas of advanced device technology: terahertz and high speed electronics, ultraviolet emitters and detectors, advanced III-V field effect transistors, III-N materials and devices, and SiC devices. These emerging areas have attracted a lot of attention and the up-to-date results presented in the book will be of interest to most device and electronics engineers and scientists. The contributors range from prominent academics, such as Professor Lester Eastman, to key US Government scientists, such as Dr Michael Wraback.
Introduces the physical principles and operational characteristics of high speed semiconductor devices. Intended for use by advanced students as well as professional engineers and scientists involved in semiconductor device research, it includes the most advanced and important topics in high speed semiconductor devices. Initial chapters cover material properties, advanced technologies and novel device building blocks, and serve as the basis for understanding and analyzing devices in subsequent chapters. The following chapters cover a group of closely related devices that includes MOSFETs, MESFETs, heterojunction FETs and permeable-base transistors, hot electron transistors, microwave diodes and photonic devices, among others. Each chapter is self-contained and features a summary section, a discussion of future device trend, and an instructional problem set.
The performance of high-speed semiconductor devices—the genius driving digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics—is inextricably linked to the unique physical and electrical properties of gallium arsenide. Once viewed as a novel alternative to silicon, gallium arsenide has swiftly moved into the forefront of the leading high-tech industries as an irreplaceable material in component fabrication. GaAs High-Speed Devices provides a comprehensive, state-of-the-science look at the phenomenally expansive range of engineering devices gallium arsenide has made possible—as well as the fabrication methods, operating principles, device models, novel device designs, and the material properties and physics of GaAs that are so keenly integral to their success. In a clear five-part format, the book systematically examines each of these aspects of GaAs device technology, forming the first authoritative study to consider so many important aspects at once and in such detail. Beginning with chapter 2 of part one, the book discusses such basic subjects as gallium arsenide materials and crystal properties, electron energy band structures, hole and electron transport, crystal growth of GaAs from the melt and defect density analysis. Part two describes the fabrication process of gallium arsenide devices and integrated circuits, shedding light, in chapter 3, on epitaxial growth processes, molecular beam epitaxy, and metal organic chemical vapor deposition techniques. Chapter 4 provides an introduction to wafer cleaning techniques and environment control, wet etching methods and chemicals, and dry etching systems, including reactive ion etching, focused ion beam, and laser assisted methods. Chapter 5 provides a clear overview of photolithography and nonoptical lithography techniques that include electron beam, x-ray, and ion beam lithography systems. The advances in fabrication techniques described in previous chapters necessitate an examination of low-dimension device physics, which is carried on in detail in chapter 6 of part three. Part four includes a discussion of innovative device design and operating principles which deepens and elaborates the ideas introduced in chapter 1. Key areas such as metal-semiconductor contact systems, Schottky Barrier and ohmic contact formation and reliability studies are examined in chapter 7. A detailed discussion of metal semiconductor field-effect transistors, the fabrication technology, and models and parameter extraction for device analyses occurs in chapter 8. The fifth part of the book progresses to an up-to-date discussion of heterostructure field-effect (HEMT in chapter 9), potential-effect (HBT in chapter 10), and quantum-effect devices (chapters 11 and 12), all of which are certain to have a major impact on high-speed integrated circuits and optoelectronic integrated circuit (OEIC) applications. Every facet of GaAs device technology is placed firmly in a historical context, allowing readers to see instantly the significant developmental changes that have shaped it. Featuring a look at devices still under development and device structures not yet found in the literature, GaAs High-Speed Devices also provides a valuable glimpse into the newest innovations at the center of the latest GaAs technology. An essential text for electrical engineers, materials scientists, physicists, and students, GaAs High-Speed Devices offers the first comprehensive and up-to-date look at these formidable 21st century tools. The unique physical and electrical properties of gallium arsenide has revolutionized the hardware essential to digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics. GaAs High-Speed Devices provides the first fully comprehensive look at the enormous range of engineering devices gallium arsenide has made possible as well as the backbone of the technology—ication methods, operating principles, and the materials properties and physics of GaAs—device models and novel device designs. Featuring a clear, six-part format, the book covers: GaAs materials and crystal properties Fabrication processes of GaAs devices and integrated circuits Electron beam, x-ray, and ion beam lithography systems Metal-semiconductor contact systems Heterostructure field-effect, potential-effect, and quantum-effect devices GaAs Microwave Monolithic Integrated Circuits and Digital Integrated Circuits In addition, this comprehensive volume places every facet of the technology in an historical context and gives readers an unusual glimpse at devices still under development and device structures not yet found in the literature.
Presenting the cutting-edge results of new device developments and circuit implementations, High-Speed Devices and Circuits with THz Applications covers the recent advancements of nano devices for terahertz (THz) applications and the latest high-speed data rate connectivity technologies from system design to integrated circuit (IC) design, providing relevant standard activities and technical specifications. Featuring the contributions of leading experts from industry and academia, this pivotal work: Discusses THz sensing and imaging devices based on nano devices and materials Describes silicon on insulator (SOI) multigate nanowire field-effect transistors (FETs) Explains the theory underpinning nanoscale nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs), simulation methods, and their results Explores the physics of the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), as well as commercially available SiGe HBT devices and their applications Details aspects of THz IC design using standard silicon (Si) complementary metal-oxide-semiconductor (CMOS) devices, including experimental setups for measurements, detection methods, and more An essential text for the future of high-frequency engineering, High-Speed Devices and Circuits with THz Applications offers valuable insight into emerging technologies and product possibilities that are attractive in terms of mass production and compatibility with current manufacturing facilities.
Providing an all-inclusive treatment of electronic and optoelectronic devices used in high-speed optical communication systems, this book emphasizes circuit applications, advanced device design solutions, and noise in sources and receivers. Core topics covered include semiconductors and semiconductor optical properties, high-speed circuits and transistors, detectors, sources, and modulators. It discusses in detail both active devices (heterostructure field-effect and bipolar transistors) and passive components (lumped and distributed) for high-speed electronic integrated circuits. It also describes recent advances in high-speed devices for 40 Gbps systems. Introductory elements are provided, making the book open to readers without a specific background in optoelectronics, whilst end-of-chapter review questions and numerical problems enable readers to test their understanding and experiment with realistic data.
High Speed Semiconductor Devices is the first textbook to focus on this topic. It gives a comprehensive introduction suitable for advanced students of electrical engineering and physics. It is practically oriented considering both physical limits and technical feasibility. It is illustrated with extensive exercises, full solutions and worked examples that give practical insight to and extend the treatment of the text.
Written by hundreds experts who have made contributions to both enterprise and academics research, these excellent reference books provide all necessary knowledge of the whole industrial chain of integrated circuits, and cover topics related to the technology evolution trends, fabrication, applications, new materials, equipment, economy, investment, and industrial developments of integrated circuits. Especially, the coverage is broad in scope and deep enough for all kind of readers being interested in integrated circuit industry. Remarkable data collection, update marketing evaluation, enough working knowledge of integrated circuit fabrication, clear and accessible category of integrated circuit products, and good equipment insight explanation, etc. can make general readers build up a clear overview about the whole integrated circuit industry. This encyclopedia is designed as a reference book for scientists and engineers actively involved in integrated circuit research and development field. In addition, this book provides enough guide lines and knowledges to benefit enterprisers being interested in integrated circuit industry.
Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.
Electrification is an evolving paradigm shift in the transportation industry toward more efficient, higher performance, safer, smarter, and more reliable vehicles. There is in fact a clear trend to move from internal combustion engines (ICEs) to more integrated electrified powertrains. Providing a detailed overview of this growing area, Advanced Electric Drive Vehicles begins with an introduction to the automotive industry, an explanation of the need for electrification, and a presentation of the fundamentals of conventional vehicles and ICEs. It then proceeds to address the major components of electrified vehicles—i.e., power electronic converters, electric machines, electric motor controllers, and energy storage systems. This comprehensive work: Covers more electric vehicles (MEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), range-extended electric vehicles (REEVs), and all-electric vehicles (EVs) including battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) Describes the electrification technologies applied to nonpropulsion loads, such as power steering and air-conditioning systems Discusses hybrid battery/ultra-capacitor energy storage systems, as well as 48-V electrification and belt-driven starter generator systems Considers vehicle-to-grid (V2G) interface and electrical infrastructure issues, energy management, and optimization in advanced electric drive vehicles Contains numerous illustrations, practical examples, case studies, and challenging questions and problems throughout to ensure a solid understanding of key concepts and applications Advanced Electric Drive Vehicles makes an ideal textbook for senior-level undergraduate or graduate engineering courses and a user-friendly reference for researchers, engineers, managers, and other professionals interested in transportation electrification.