Download Free Advanced Functional Materials For Sustainable Environment Book in PDF and EPUB Free Download. You can read online Advanced Functional Materials For Sustainable Environment and write the review.

The book gives an insight into the latest research going on worldwide in the area of functional materials that specifically utilized for the energy harvesting, storage, and environmental monitoring. Since the technology is moving very fast day by day, it has become a need of hour to stay updated with recent advancements in materials which include electronic, magnetic, optical, adaptive, dielectric materials, etc., that are required to develop new functionalities with better performance that is beneficial for sustainable environment. The broad areas that are covered in the book include the knowledge of wide range of materials for energy harvesting, energy storage, and sensors for environmental monitoring. This book is a value additional reference for beginners, researchers, and academicians regarding the new functional materials for device applications. This book covers a wide range of topics: multifunctional materials, 2D materials, sensing materials, materials for environmental studies, DFT and solar simulation of materials, perovskite and double perovskite materials, materials for energy conversion and storage, smart materials, advanced functional materials, polymeric materials, composites, materials for sustainable development, nanomaterials, and thin films.
Polymer-based advanced functional materials are one of most sought after products of this global high performance material demand as polymer-based materials guarantee both processing ease and mechanical flexibilities. This volume provides a comprehensive and updated review of major innovations in the field of polymer-based advanced functional materials which focuses on constructive knowledge on advanced multifunctional materials and their resultant techno-commercial applications. The contents aim at restricting the coverage to energy and environment related applications as the said two are the most emerging application domains of polymer-based advanced functional materials. It highlights the cutting-edge and recent research findings of polymer based advanced functional materials in energy and environment sectors wherein each chapter focuses on a specific energy and environment related application of polymer-based advanced functional materials, their preparation technique, nature enhancement achieved and allied factors. This volume would be of great interest to researchers, academicians and professionals, involved in polymers, chemistry, energy and environmental research, and other allied domains.
This book is dedicated to the innovative and emerging applications of designed functional surfaces to solving environmental challenges.
This book summarizes recent and critical aspects of advanced materials for environmental protection and remediation. It explores the various development aspects related to environmental remediation, including design and development of novel and highly efficient materials, aimed at environmental sustainability. Synthesis of advanced materials with desirable physicochemical properties and applications is covered as well. Distributed across 13 chapters, the major topics covered include sensing and elimination of contaminants and hazardous materials via advanced materials along with hydrogen energy, biofuels, and CO2 capture technology. Discusses the development in design of synthesis process and materials with sustainable approach. Covers removal of biotic and abiotic wastes from the aqueous systems. Includes hydrogen energy and biofuels under green energy production. Explores removal of environmental (soil and air) contaminants with nanomaterials. Reviews advanced materials for environmental remediation in both liquid and gas phases.
"Functional Materials textbook is not simply a review of the vast body of literature of the recent years, as it holds the focus upon various aspects of application. Moreover, it selects only a few topics in favor of a solid and thorough treatment of the relevant aspects. This book comes in a good time, when a large body of academic literature has been accumulated and is waiting for a critical inspection in the light of the real demands of application." Professor Gerhard Wegner, Max-Planck Institute for Polymer Research, Mainz, Germany The chapters cover three important fields in the development of functional materials: energy, environment, and biomedical applications. These topics are explained and discussed from both an experimental and a theoretical perspective. Functional organic and inorganic materials are at the center of most technological breakthroughs. Therefore, the understanding of material properties is fundamental to the development of novel functionalities and applications.
With recent developments in the polymer, ceramic, sensor, and fuel cell technology, a range of novel materials have been manufactured for advanced, compact, and electronic industry. Polymers, silicon, energy materials have received much attention in recent years. "Advanced Functional Materials" gives the most recent research results on polymer, fine ceramics, sensor, and green fuel cells. The content of this book, mainly based on the authors' recent research results, covers a broad spectrum including: the advanced inorganic-organic-hybrid polymeric materials, high functional sensor, and microbial fuel cells. The book is suitable for the researchers working in the areas of polymer, nanotechnology, ceramic engineering, engineering thermoplastic, energy and power engineering, chemical engineering and materials, etc. Hee-Gweon Woo is a professor at the Department of Chemistry, Chonnam National University, the Republic of Korea. Hong Li is a professor at the Institute of Polymer Chemistry, Nankai University, China.
Sustainable development is a very prevalent concept of modern society. This concept has appeared as a critical force in combining a special focus on development and growth by maintaining a balance of using human resources and the ecosystem in which we are living. The development of new and advanced materials is one of the powerful examples in establishing this concept. Green and sustainable advanced materials are the newly synthesized material or existing modified material having superior and special properties. These fulfil today’s growing demand for equipment, machines and devices with better quality for an extensive range of applications in various sectors such as paper, biomedical, textile, and much more. Volume 2, provides chapters on the valorization of green and sustainable advanced materials from a biomedical perspective as well as the applications in textile technology, optoelectronics, energy materials systems, and the food and agriculture industry.
This book was written by authors in the field of preparation of advanced functional materials and their wide-ranging applications. The topics in the book include: preparation of several advanced functional materials, and their applications in sensors, health, concrete, textile, glasses, and pharmacy. In this book, the authors focused on recent studies, applications, and new technological developments in fundamental properties of advanced functional materials.
This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of metamaterials and multifunctional composites, multiferroic materials, amorphous and high-entropy alloys, advanced glass materials and devices, advanced optoelectronic and microelectronic materials, biomaterials, deformation behavior and flow units in metastable materials, advanced fibers and nano-composites, polymer materials, and nanoporous metal materials. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.
Covers three fields in the development of functional materials: energy, environment, and biomedical applications.