Download Free Advanced Fluoropolymer Nanocomposites Book in PDF and EPUB Free Download. You can read online Advanced Fluoropolymer Nanocomposites and write the review.

Advanced Fluoropolymer Nanocomposites: Fabrication, Processing, Characterization and Applications presents a comprehensive review on the fundamental chemistry, physics, biology and engineering of advanced fluoropolymer nanocomposites. Detailed attention is given to the synthesis, processing characterization, properties and applications of fluoropolymer nanocomposites. Morphological, thermal, electrical, mechanical, tribological and viscoelastic properties are also discussed in detail, along with the influence of synthesis methods on the formation of fluoropolymer nanocomposites, including the effect of nanofiller size and shape and the dispersion state of various nanofillers in different fluoropolymer matrices. This book will be a useful reference resource for scientists, engineers and postgraduate students working in the field of polymer science and technology, materials science and engineering, composites and nanocomposites. This resource will help them find solutions to both fundamental and applied problems associated with their research. It will also assist researchers in becoming more acquainted with the field to address key questions within a short time. - Covers the range of fluoropolymer nanocomposites and their fabrication, processing, structural, physical, thermal, electrical and mechanical properties - Discusses high-performance applications in the electronics, energy, architecture, environmental, biomedical and textile industries - Presents the latest information on disposal and recycling, safety considerations, and the environmental and health impact of fluoropolymer nanocomposites
Advanced Fluoropolymer Nanocomposites: Fabrication, Processing, Characterization and Applications presents a comprehensive review on the fundamental chemistry, physics, biology and engineering of advanced fluoropolymer nanocomposites. Detailed attention is given to the synthesis, processing characterization, properties and applications of fluoropolymer nanocomposites. Morphological, thermal, electrical, mechanical, tribological and viscoelastic properties are also discussed in detail, along with the influence of synthesis methods on the formation of fluoropolymer nanocomposites, including the effect of nanofiller size and shape and the dispersion state of various nanofillers in different fluoropolymer matrices. This book will be a useful reference resource for scientists, engineers and postgraduate students working in the field of polymer science and technology, materials science and engineering, composites and nanocomposites. This resource will help them find solutions to both fundamental and applied problems associated with their research. It will also assist researchers in becoming more acquainted with the field to address key questions within a short time.
Advanced Polymer Nanocomposites: Science Technology and Applications presents a detailed review of new and emerging research outcomes from fundamental concepts that are relevant to science, technology and advanced applications. Sections cover key drivers such as the rising demand for lightweight and high strength automotive parts, the need for sustainable packaging materials and conservation of flavor in the food, drinks and beverages industries, and defense initiatives such as ballistic protection, fire retardation and electromagnetic shielding. With contributions from international authors working at the cutting-edge of research, this book will be an essential reference resource for materials scientists, chemists, manufacturers and polymer engineers. Through recent advances in nanotechnology, researchers can now manipulate atoms to create materials and products that are changing the way we live our lives. These materials have enhanced properties, such as tensile strength, impact and scratch resistance, electrical and thermal conductivity, thermal stability and fire resistance. Combines processing, properties and advanced commercial applications Emphasizes synthesis and fabrication techniques Focuses on environmental and health aspects Covers future challenges, opportunities, recycling and sustainability Contains contributions from high-profile, cutting-edge international researchers
This new book focuses on eco-friendly nanohybrid. It clearly summarizes the fundamentals and established techniques of synthesis and processing of eco-friendly nanohybrid materials to provide a systematic and coherent picture of synthesis and the processing of nanomaterials. The research on nanotechnology is evolving and expanding very rapidly. Nanotechnology represents an emerging technology that has the potential to have an impact on an incredibly wide number of industries, such as the medical, environmental, and pharmaceutical industries. There is a growing need to develop environmentally friendly processes for corrosion control that do not employ toxic chemicals. This book helps to fill this need. This volume is a comprehensive compilation of several trending research topics, such as fouling, energy-storing devices, water treatment, corrosion, biomaterials, and high performance materials. The topics are approached in an encompassing manner, covering the basics and the recent trends in this area, clearly defining the problems and suggesting potential solutions. Topics in the book include: Synthesis of complex polymer intermediates Synthesis of nanoparticles and nanofibers Binding interaction between nano- and micromaterials Fabrication of polymer nanocomposites Making of functionally terminated nanohybrid coatings Development of corrosion resistant coatings Antifouling coatings Bioceramic materials Materials for therapeutic and aesthetic applications Eco-Friendly Nano-Hybrid Materials for Advanced Engineering Applications will benefit a wide variety of those in this field, including: Shipping and coating industries encountering fouling problems Innovators in the field of energy storage and electrical equipment Developers of efficient water treatment systems Biomedical industries looking for novel bio-compatible materials Industries seeking high performance epoxy-based materials needed for specific applications
As industries strive for greater efficiency and longevity in their metal infrastructure, corrosion remains a persistent and costly adversary. Traditional corrosion inhibitors often fail to provide long-term protection, leading to significant economic losses and environmental harm. Innovations in Nanomaterials-Based Corrosion Inhibitors delves into a thorough exploration of the rapidly evolving field of nanomaterials and their pivotal role in corrosion inhibition. This comprehensive guide offers a transformative solution utilizing the power of nanotechnology to combat corrosion with unparalleled effectiveness. Within the pages of this book lies a wealth of knowledge meticulously curated to address the pressing need for advanced corrosion inhibition strategies. From understanding the fundamental principles of corrosion to exploring the innovative applications of nanomaterials, it equips readers with the tools to revolutionize their approach to metal protection. With a precise analysis of the synthesis, characterization, and practical implementation of diverse nanomaterials, encompassing nanoparticles, nanocomposites, and nanostructured coatings, and a primary focus on safeguarding metal surfaces against corrosion, this book creates the much-needed reference for shaping the future of corrosion inhibitors. Innovations in Nanomaterials-Based Corrosion Inhibitors offers a roadmap to overcoming corrosion challenges and heralding a new era of sustainability and cost-effectiveness. By embracing nanotechnology, industries can enhance the durability of their metal infrastructure while minimizing environmental impact and maximizing economic efficiency.
This book provides the fundamental aspects of bionanomaterials and bionanotechnology, and insight into the synthesis and modification of bionanomaterials in a detailed manner. It initiates with a general overview of biotechnology and nanotechnology followed by different strategies and methodologies for the synthesis of nanomaterials. Further, it discusses pertinent topics such as protein engineering, analysis, mechanisms of microbe- mediated nanosynthesis, followed by various challenges and innovation strategies, and the role of enzymes in bionanotechnology. Features: Covers the synthesis of bionanomaterials, including the interaction between nanomaterial and biogenic materials Encompasses the study of the connections between structure, molecular biology, and nanotechnology Explains several techniques (XRD, SEM, TEM, etc.) used for the analysis of bionanomaterials Includes prospects, challenges, and opportunities associated with bionanotechnology Reviews the interaction between nanomaterials and the biological system and self- assembly in bionanotechnology This book is aimed at graduate students and researchers in materials sciences, biotechnology, and bionanotechnology.
The novel insights, as well as the main drawbacks of each engineered composites material is extensively evaluated taking into account the strong relationship between packaging materials, environmental and reusability concerns, food quality, and nutritional value. Composites, by matching the properties of different components, allow the development of innovative and performing strategies for intelligent food packaging, thus overcoming the limitations of using only a single material. The book starts with the description of montmorillonite and halloysite composites, subsequently moving to metal-based materials with special emphasis on silver, zinc, silicium and iron. After the discussion about how the biological influences of such materials can affect the performance of packaging, the investigation of superior properties of sp2 carbon nanostructures is reported. Here, carbon nanotubes and graphene are described as starting points for the preparation of highly engineered composites able to promote the enhancement of shelf-life by virtue of their mechanical and electrical features. Finally, in the effort to find innovative composites, the applicability of biodegradable materials from both natural (e.g. cellulose) and synthetic (e.g. polylactic acid – PLA) origins, with the aim to prove that polymer-based materials can overcome some key limitations such as environmental impact and waste disposal.
Supercapacitors are energy storing devices, gaining great scientific attention due to their excellent cycling life, charge-discharge stability, energy, and power density. The central theme of this book is to review the multiple applications of polymer nanocomposites in supercapacitors in a comprehensive manner, including discussions pertaining to various unresolved issues and new challenges in the subject area. It illustrates polymer nanocomposite preparation and working mechanisms as electrodes, binders, separators, and electrolytes. This edited volume also explains different components of supercapacitors, including theory, modelling, and simulation aspects. Features: Covers the synthesis and properties of polymer nanocomposites for varied usage. Explains roles of different types of nanofillers in polymeric systems for developing supercapacitors. Highlights theory, modelling, and simulation of polymeric supercapacitors. Gives an illustrative overview of the multiple applications of polymers and their nanocomposites. Includes graphene, CNT, nanoparticle, carbon, and nano-cellulose-based supercapacitors. This book is aimed at graduate students and researchers in materials science, polymer science, polymer physics, electrochemistry, electronic materials, energy management, electronic engineering, polymer engineers, and chemical engineering.