Download Free Advanced Digital Signal Processing Of Seismic Data Book in PDF and EPUB Free Download. You can read online Advanced Digital Signal Processing Of Seismic Data and write the review.

Presents an advanced overview of Digital Signal Processing and its applications to exploration seismology, for electrical engineers, geophysicists and petroleum professionals.
Seismic data must be interpreted using digital signal processing techniques in order to create accurate representations of petroleum reservoirs and the interior structure of the Earth. This book provides an advanced overview of digital signal processing (DSP) and its applications to exploration seismology using real-world examples. The book begins by introducing seismic theory, describing how to identify seismic events in terms of signals and noise, and how to convert seismic data into the language of DSP. Deterministic DSP is then covered, together with non-conventional sampling techniques. The final part covers statistical seismic signal processing via Wiener optimum filtering, deconvolution, linear-prediction filtering and seismic wavelet processing. With over sixty end-of-chapter exercises, seismic data sets and data processing MATLAB codes included, this is an ideal resource for electrical engineering students unfamiliar with seismic data, and for Earth Scientists and petroleum professionals interested in DSP techniques.
Addresses the construction, analysis, and interpretation of mathematical and statistical models. The practical use of the concepts and techniques developed is illustrated by numerous applications. The chosen examples will interest many readers, including those engaged in digital signal analysis in disciplines other than geophysics.
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and over-sampling ADC. New to this edition: - MATLAB projects dealing with practical applications added throughout the book - New chapter (chapter 13) covering sub-band coding and wavelet transforms, methods that have become popular in the DSP field - New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals - All real-time C programs revised for the TMS320C6713 DSK - Covers DSP principles with emphasis on communications and control applications - Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems - Website with MATLAB programs for simulation and C programs for real-time DSP
Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates and extends the chapters in the previous edition and includes two new chapters on MIMO systems, Correlation and Eigen analysis and independent component analysis. The wide range of topics covered in this book include Wiener filters, echo cancellation, channel equalisation, spectral estimation, detection and removal of impulsive and transient noise, interpolation of missing data segments, speech enhancement and noise/interference in mobile communication environments. This book provides a coherent and structured presentation of the theory and applications of statistical signal processing and noise reduction methods. Two new chapters on MIMO systems, correlation and Eigen analysis and independent component analysis Comprehensive coverage of advanced digital signal processing and noise reduction methods for communication and information processing systems Examples and applications in signal and information extraction from noisy data Comprehensive but accessible coverage of signal processing theory including probability models, Bayesian inference, hidden Markov models, adaptive filters and Linear prediction models Advanced Digital Signal Processing and Noise Reduction is an invaluable text for postgraduates, senior undergraduates and researchers in the fields of digital signal processing, telecommunications and statistical data analysis. It will also be of interest to professional engineers in telecommunications and audio and signal processing industries and network planners and implementers in mobile and wireless communication communities.
This modern introduction to seismic data processing in both exploration and global geophysics demonstrates practical applications through real data and tutorial examples. The underlying physics and mathematics of the various seismic analysis methods are presented, giving students an appreciation of their limitations and potential for creating models of the sub-surface. Designed for a one-semester course, this textbook discusses key techniques within the context of the world's ever increasing need for petroleum and mineral resources - equipping upper undergraduate and graduate students with the tools they need for a career in industry. Examples presented throughout the text allow students to compare different methods and can be demonstrated using the instructor's software of choice. Exercises at the end of sections enable students to check their understanding and put the theory into practice and are complemented by solutions for instructors and additional case study examples online to complete the learning package.
Offers a fresh approach to digital signal processing (DSP), combining heuristic reasoning and physical appreciation with mathematical methods.
Power System Fault Diagnosis: A Wide Area Measurement Based Intelligent Approach is a comprehensive overview of the growing interests in efficient diagnosis of power system faults to reduce outage duration and revenue losses by expediting the restoration process.This book illustrates intelligent fault diagnosis schemes for power system networks, at both transmission and distribution levels, using data acquired from phasor measurement units. It presents the power grid modeling, fault modeling, feature extraction processes, and various fault diagnosis techniques, including artificial intelligence techniques, in steps. The book also incorporates uncertainty associated with line parameters, fault information (resistance and inception angle), load demand, renewable energy generation, and measurement noises. - Provides step-by-step modeling of power system networks (distribution and transmission) and faults in MATLAB/SIMULINK and real-time digital simulator (RTDS) platforms - Presents feature extraction processes using advanced signal processing techniques (discrete wavelet and Stockwell transforms) and an easy-to-understand optimal feature selection method - Illustrates comprehensive results in the graphical and tabular formats that can be easily reproduced by beginners - Highlights various utility practices for fault location in transmission networks, distribution systems, and underground cables.