Download Free Advanced Crop Improvement Volume 1 Book in PDF and EPUB Free Download. You can read online Advanced Crop Improvement Volume 1 and write the review.

As per the reports of FAO, the human population will rise to 9 billion by the end of 2050 and 70% of more food must be produced over the next three decades to feed the additional population. The breeding approaches for crop improvement programs are dependent on the availability and accessibility of genetic variation, either spontaneous or induced by the mutagens. Plant breeders, agronomists, and geneticists are under constant pressure to expand food production by employing innovative breeding strategies to enhance yield, adaptability, nutrition, resistance to biotic and abiotic stresses. In conventional breeding approaches, introgression of genes in crop varieties is laborious and time-consuming. Nowadays, new innovative plant breeding techniques such as molecular breeding and plant biotechnology, supplement the traditional breeding approaches to achieve the desired goals of enhanced food production. With the advent of recent molecular tools like genomics, transgenics, molecular marker-assisted back-crossing, TILLING, Eco-TILLING, gene editing, CRISPR CAS, non-targeted protein abundant comparative proteomics, genome wide association studies have made possible mapping of important QTLs, insertion of transgenes, reduction of linkage drags, and manipulation of genome. In general, conventional and modern plant breeding approaches would be strategically ideal for developing new elite crop varieties to meet the feeding requirement of the increasing world population. This book highlights the latest progress in the field of plant breeding, and their applicability in crop improvement. The basic concept of this 2-volume work is to assess the use of modern breeding strategies in supplementing conventional breeding toward the development of elite crop varieties, for obtaining desired goals of food production.
As per the reports of FAO, the human population will rise to 9 billion by the end of 2050 and 70% of more food must be produced over the next three decades to feed the additional population. The breeding approaches for crop improvement programs are dependent on the availability and accessibility of genetic variation, either spontaneous or induced by the mutagens. Plant breeders, agronomists, and geneticists are under constant pressure to expand food production by employing innovative breeding strategies to enhance yield, adaptability, nutrition, resistance to biotic and abiotic stresses. In conventional breeding approaches, introgression of genes in crop varieties is laborious and time-consuming. Nowadays, new innovative plant breeding techniques such as molecular breeding and plant biotechnology, supplement the traditional breeding approaches to achieve the desired goals of enhanced food production. With the advent of recent molecular tools like genomics, transgenics, molecular marker-assisted back-crossing, TILLING, Eco-TILLING, gene editing, CRISPR CAS, non-targeted protein abundant comparative proteomics, genome wide association studies have made possible mapping of important QTLs, insertion of transgenes, reduction of linkage drags, and manipulation of genome. In general, conventional and modern plant breeding approaches would be strategically ideal for developing new elite crop varieties to meet the feeding requirement of the increasing world population. This book highlights the latest progress in the field of plant breeding, and their applicability in crop improvement. The basic concept of this 2-volume work is to assess the use of modern breeding strategies in supplementing the conventional breeding toward the development of elite crop varieties, for obtaining desired goals of food production.
Advancement in Crop Improvement Techniques presents updates on biotechnology and molecular biological approaches which have contributed significantly to crop improvement. The book discusses the emerging importance of bioinformatics in analyzing the vast resources of information regarding crop improvement and its practical application and utilization. Throughout this comprehensive resource, emphasis is placed on various techniques used to improve agricultural crops, providing a common platform for the utility of these techniques and their combinations. Written by an international team of contributors, this book provides an in-depth analysis of existing tools and a framework for new research. Reviews techniques used for crop improvement, from selection and crossing over, to microorganismal approaches Explores the role of conventional biotechnology in crop improvement Summarizes the combined approaches of cytogenetics and biotechnology for crop improvement, including the importance of molecular techniques in this process Focuses on the emerging role of bioinformatics for crop improvement
This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.
This book has been designed to cover the undergraduate syllabus of Crop Improvement as per ICAR 5th Deans' committee report book. It covers the entire syllabus in one compact volume of 20 chapters. Hope this volume would be useful to the students, teachers and researchers engaged in the field of Plant Breeding [Crop Improvement], Genetics and Seed Technology.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
Plant Breeding and Cultivar Development features an optimal balance between classical and modern tools and techniques related to plant breeding. Written for a global audience and based on the extensive international experience of the authors, the book features pertinent examples from major and minor world crops. Advanced data analytics (machine learning), phenomics and artificial intelligence are explored in the book's 28 chapters that cover classical and modern plant breeding. By presenting these advancements in specific detail, private and public sector breeding programs will learn about new, effective and efficient implementation. The insights are clear enough that non-plant breeding majoring students will find it useful to learn about the subject, while advanced level students and researchers and practitioners will find practical examples that help them implement their work. Bridges the gap between conventional breeding practices and state-of-the-art technologies Provides real-world case studies of a wide range of plant breeding techniques and practices Combines insights from genetics, genomics, breeding science, statistics, computer science and engineering for crop improvement and cultivar development
This book provides comprehensive information on the latest tools and techniques of molecular genetics and their applications in crop improvement. It thoroughly discusses advanced techniques used in molecular markers, QTL mapping, marker-assisted breeding, and molecular cytogenetics.
"An indispensable source for researchers, teachers, and graduate and postgraduate students interested in mutation breeding and genetic engineering. It introduces readers to contemporary knowledge and state-of-the-art technologies in the field of mutation breeding, including fundamental mechanisms and applications. . . . It will provide new directions, and avenues for enhancement of food security and food quality by using the latest techniques for the 'mutation as breeding' approach." - From Prof. Jameel M. Al-Khayri, King Faisal University, Saudi Arabia This comprehensive three-volume set book aims to help combat the challenge of providing enough food for the world by the use of advanced genetic processes to improve crop production, both in quantity and quality. Volume 1: Mutagenesis and Crop Improvement discusses mutagenesis, cytotoxicity, and crop improvement, covering the processes, mutagenic effectiveness, and mechanisms. The volume emphasizes the improvement of agronomic characteristics by manipulating the genotype of plant species, resulting in increased productivity. Volume 2: Revolutionizing Plant Biology covers the use of mutagenesis and biotechnology to explore the variability of mutant genes for crop improvement. The chapters deal with in-vitro mutagenesis to exploit the somaclonal variations induced in cell culture and highlight the importance of in-vitro mutagenesis in inducing salt resistance, heat resistance, and drought resistance. Volume 3: Mechanisms for Genetic Manipulation of Plants and Plant Mutants reviews the genetic engineering techniques used to mutate genes and to incorporate them into different plant species of cereals, pulses, vegetables, and fruits. Also discussed are the principles of genetic engineering by which desired genes can be transferred from plants to animals to microorganisms and vice versa.
Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.