Download Free Advanced Control Optimization Paradigms For Energy System Operation And Management Book in PDF and EPUB Free Download. You can read online Advanced Control Optimization Paradigms For Energy System Operation And Management and write the review.

Distributed energy technologies are gaining popularity nowadays; however, due to the highly intermittent characteristics of distributed energy resources, a larger penetration of these resources into the distribution grid network becomes of major concern. The main issue is to cope with the intermittent nature of the renewable sources alongside the requirements for power quality and system stability. Unlike traditional power systems, the control and optimization of complex energy systems comprising of wind, solar, thermal, and energy storage becomes difficult in many aspects, such as modelling, integration, operation, coordination and planning etc. This means that energy conversion as per the standards imposed by the energy market is unachievable without adequate control, management, and optimization. This edited book serves as a resource for the engineers, scientists and professionals working on distributed energy systems. The book is an extensive collection of state-of-the-art studies on advanced control paradigms for complex energy systems, with emphasis on the optimization and management of the high penetration of distributed energy resources into power distribution networks. Readers will find the book inspiring and useful whilst carrying out their own research in distributed energy systems. Key features • An extensive collection of state-of-the-art studies on advanced control paradigms for complex energy systems.• Emphasis on the optimization and management of high penetration of distributed energy resources into power/energy distribution networks.• Serves as a valuable resource for engineers, scientists, academicians, experienced professionals, and research scholars who are working in management of energy systems.
This book presents advanced studies on the conversion efficiency, mechanical reliability, and the quality of power related to wind energy systems. The main concern regarding such systems is reconciling the highly intermittent nature of the primary source (wind speed) with the demand for high-quality electrical energy and system stability. This means that wind energy conversion within the standard parameters imposed by the energy market and power industry is unachievable without optimization and control. The book discusses the rapid growth of control and optimization paradigms and applies them to wind energy systems: new controllers, new computational approaches, new applications, new algorithms, and new obstacles.
In recent years, the development of advanced structures for providing sustainable energy has been a topic at the forefront of public and political conversation. Many are looking for advancements on pre-existing sources and new and viable energy options to maintain a modern lifestyle. The Handbook of Research on Power and Energy System Optimization is a critical scholarly resource that examines the usage of energy in relation to the perceived standard of living within a country and explores the importance of energy structure augmentation. Featuring coverage on a wide range of topics including energy management, micro-grid, and distribution generation, this publication is targeted towards researchers, academicians, and students seeking relevant research on the augmentation of current energy structures to support existing standards of living.
Distributed energy technologies are gaining popularity nowadays; however, due to the highly intermittent characteristics of distributed energy resources, a larger penetration of these resources into the distribution grid network becomes of major concern. The main issue is to cope with the intermittent nature of the renewable sources alongside the requirements for power quality and system stability. Unlike traditional power systems, the control and optimization of complex energy systems comprising of wind, solar, thermal, and energy storage becomes difficult in many aspects, such as modelling, integration, operation, coordination and planning etc. This means that energy conversion as per the standards imposed by the energy market is unachievable without adequate control, management, and optimization. This edited book serves as a resource for the engineers, scientists and professionals working on distributed energy systems. The book is an extensive collection of state-of-the-art studies on advanced control paradigms for complex energy systems, with emphasis on the optimization and management of the high penetration of distributed energy resources into power distribution networks. Readers will find the book inspiring and useful whilst carrying out their own research in distributed energy systems. Key features: • An extensive collection of state-of-the-art studies on advanced control paradigms for complex energy systems. • Emphasis on the optimization and management of high penetration of distributed energy resources into power/energy distribution networks. • Serves as a valuable resource for engineers, scientists, academicians, experienced professionals, and research scholars who are working in management of energy systems.
Computer-aided process engineering (CAPE) plays a key design and operations role in the process industries, from the molecular scale through managing complex manufacturing sites. The research interests cover a wide range of interdisciplinary problems related to the current needs of society and industry. ESCAPE 23 brings together researchers and practitioners of computer-aided process engineering interested in modeling, simulation and optimization, synthesis and design, automation and control, and education. The proceedings present and evaluate emerging as well as established research methods and concepts, as well as industrial case studies. - Contributions from the international community using computer-based methods in process engineering - Reviews the latest developments in process systems engineering - Emphasis on industrial and societal challenges
This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists.
This book investigates three main characteristics of future urban energy system for buildings, including flexibility, resilience and optimization. It explores the energy flexibility by considering renewable energy integration with buildings, sector coupling, and energy trading in the local energy market. Energy resilience is addressed from aspects of future climate change, pandemic crisis, and operational uncertainties. Approaches for system design, dynamic pricing and advanced control are discussed for the optimization of urban energy system. Knowledge from this book contributes to the effective means in future urban energy paradigm to closely integrate multiple energy systems (i.e., distribution, mobility, production and storage) with different energy carriers (i.e., heat, electricity) in an optimal manner for energy use. It would facilitate the envision of next-generation urban energy systems, towards sustainability, resilience and prosperity. This book targets at a broad readership with specific experience and knowledge in energy system, transport, built environment and urban planning. As such, it will appeal to researchers, graduate students, engineers, consultants, urban scientists, investors and policymakers, with interests in energy flexibility, building/city resilience and climate neutrality.
A microgrid (MG) is a local energy system consisting of a number of energy sources, energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs include wind, solar or other renewable energy sources. MGs provide flexibility, reduce the main electricity grid dependence and contribute to change the large centralized production paradigm to local and distributed generation. However, such energy systems require complex management, advanced control and optimization. Interest on MGs hierarchical control has increased due to the availability of cheap online measurements. Similarly to any process system, MG hierarchical control is divided into three levels. However, an additional control algorithm is required to manage power transmission between sources and loads, maximizing efficiency and minimizing transmission losses. This real-time optimization problem is addressed to locally readjust converters operation to attain global efficiency. An algorithm is presented by formulating and solving the power sharing optimization problem in a two-level approach. The objective function is the sum of the apparent power transferred, whose minimization reduces total power losses and energy costs. The performance of the approach proposed is validated on a simulated case study. Different scenarios are tested and the performance of the algorithm is compared and discussed. The power losses reduction obtained with the proposed approach are compared with those obtained by standard procedures (Equal Power Sharing - EPS), showing enhanced performance.
This book gathers high-quality research articles and reviews that reflect the latest advances in the smart network-inspired paradigm and address current issues in IoT applications as well as other emerging areas. Featuring work from both academic and industry researchers, the book provides a concise overview of the current state of the art and highlights some of the most promising and exciting new ideas and techniques. Accordingly, it offers a valuable resource for senior undergraduate and graduate students, researchers, policymakers, and IT professionals and providers working in areas that call for state-of-the-art networks and IoT applications.
This book explores the recent advances in the leading paradigms of urbanism, namely compact cities, eco-cities, and data–driven smart cities, and the evolving approach to their amalgamation under the umbrella term of smart sustainable cities. It addresses these advances by investigating how and to what extent the strategies of compact cities and eco-cities and their merger have been enhanced and strengthened through new planning and development practices, and are being supported and leveraged by the applied solutions pertaining to data-driven smart cities. The ultimate goal is to advance sustainability and harness its synergistic effects on multiple scales. This entails developing and implementing more effective approaches to the balanced integration of the three dimensions of sustainability, as well as to producing combined effects of the strategies and solutions of the prevailing approaches to urbanism that are greater than the sum of their separate effects in terms of the tripartite value of sustainability. Sustainable urban development is today seen as one of the keys towards unlocking the quest for a sustainable world. And the big data revolution is set to erupt in cities throughout the world, heralding an era where instrumentation, datafication, and computation are increasingly pervading the very fabric of cities and the spaces we live in thanks to the IoT. Big data and the IoT technologies are seen as powerful forces that have tremendous potential for advancing urban sustainability. Indeed, they are instigating a massive change in the way sustainable cities can tackle the kind of special conundrums, wicked problems, and significant challenges they inherently embody as complex systems. They offer a multitudinous array of innovative solutions and sophisticated approaches informed by groundbreaking research and data–driven science. As such, they are becoming essential to the functioning of sustainable cities. Besides, yet knowing to what extent we are making progress towards sustainable cities is problematic, adding to the fragmented, conflicting picture that arises of change on the ground in the face of the escalating rate and scale of urbanization and in the light of emerging ICT and its novel applications. In a nutshell, new circumstances require new responses. This timely and multifaceted book is intended for a wide readership. As such, it will appeal to researchers, academics, urban scientists, urbanists, planners, designers, policy-makers, and futurists, as well as all readers interested in sustainable cities and their ongoing and future data-driven transformation.