Download Free Advanced Control Of Industrial Processes Book in PDF and EPUB Free Download. You can read online Advanced Control Of Industrial Processes and write the review.

This book presents the concepts and algorithms of advanced industrial process control and on-line optimization within the framework of a multilayer structure. It describes the interaction of three separate layers of process control: direct control, set-point control, and economic optimization. The book features illustrations of the methodologies and algorithms by worked examples and by results of simulations based on industrial process models.
Advanced Control and Supervision of Mineral Processing Plants describes the use of dynamic models of mineral processing equipment in the design of control, data reconciliation and soft-sensing schemes; through examples, it illustrates tools integrating simulation and control system design for comminuting circuits and flotation columns. Coverage is given to the design of soft sensors based on either single-point measurements or more complex measurements like images. Issues concerning data reconciliation and its employment in the creation of instrument architecture and fault diagnosis are surveyed. In consideration of the widespread use of distributed control and information management systems in mineral processing, the book describes the platforms and toolkits available for implementing such systems. Applications of the techniques described in real plants are used to highlight their benefits; information for all of the examples, together with supporting MATLAB® code can be found at www.springer.com/978-1-84996-105-9.
Industrial Process Identification and Control Design is devoted to advanced identification and control methods for the operation of continuous-time processes both with and without time delay, in industrial and chemical engineering practice. The simple and practical step- or relay-feedback test is employed when applying the proposed identification techniques, which are classified in terms of common industrial process type: open-loop stable; integrating; and unstable, respectively. Correspondingly, control system design and tuning models that follow are presented for single-input-single-output processes. Furthermore, new two-degree-of-freedom control strategies and cascade control system design methods are explored with reference to independently-improving, set-point tracking and load disturbance rejection. Decoupling, multi-loop, and decentralized control techniques for the operation of multiple-input-multiple-output processes are also detailed. Perfect tracking of a desire output trajectory is realized using iterative learning control in uncertain industrial batch processes. All the proposed methods are presented in an easy-to-follow style, illustrated by examples and practical applications. This book will be valuable for researchers in system identification and control theory, and will also be of interest to graduate control students from process, chemical, and electrical engineering backgrounds and to practising control engineers in the process industry.
Overview of Industrial Process Automation, Second Edition, introduces the basics of philosophy, technology, terminology, and practices of modern automation systems through the presentation of updated examples, illustrations, case studies, and images. This updated edition adds new developments in the automation domain, and its reorganization of chapters and appendixes provides better continuity and seamless knowledge transfer. Manufacturing and chemical engineers involved in factory and process automation, and students studying industrial automation will find this book to be a great, comprehensive resource for further explanation and study. - Presents a ready made reference that introduces all aspects of automation technology in a single place with day-to-day examples - Provides a basic platform for the understanding of industry literature on automation products, systems, and solutions - Contains a guided tour of the subject without the requirement of any previous knowledge on automation - Includes new topics, such as factory and process automation, IT/OT Integration, ISA 95, Industry 4.0, IoT, etc., along with safety systems in process plants and machines
This book is a practical guide to the application of control benchmarking to real, complex, industrial processes. The variety of industrial case studies gives the benchmarking ideas presented a robust real-world attitude. The book deals with control engineering principles and economic and management aspects of benchmarking. It shows the reader how to avoid common problems in benchmarking and details the benefits of effective benchmarking.
This book provides a basic approach to understanding and effectively applying industrial process control based on the systems concept. It provides an overview of an operating system, then divides it into sections for individual discussion. It covers topics including the operating system, process control, pressure systems, thermal systems, and level determining systems. It also addresses flow process systems, analytical process systems, microprocessor systems, automated processes, and robotic systems.
Filling a gap in the literature for a practical approach to the topic, this book is unique in including a whole section of case studies presenting a wide range of applications from polymerization reactors and bioreactors, to distillation column and complex fluid catalytic cracking units. A section of general tuning guidelines of MPC is also present.These thus aid readers in facilitating the implementation of MPC in process engineering and automation. At the same time many theoretical, computational and implementation aspects of model-based control are explained, with a look at both linear and nonlinear model predictive control. Each chapter presents details related to the modeling of the process as well as the implementation of different model-based control approaches, and there is also a discussion of both the dynamic behaviour and the economics of industrial processes and plants. The book is unique in the broad coverage of different model based control strategies and in the variety of applications presented. A special merit of the book is in the included library of dynamic models of several industrially relevant processes, which can be used by both the industrial and academic community to study and implement advanced control strategies.
Offering a modern, process-oriented approach emphasizing process control scheme development instead of extended coverage of LaPlace space descriptions of process dynamics, this text focuses on aspects that are most important for process engineering in the 21st century. Instead of starting with the controller, the book starts with the process and moves on to how basic regulatory control schemes can be designed to achieve the process’ objectives while maintaining stable operations. In addition to continuous control concepts, process and control system dynamics are embedded into the text with each new concept presented. The book also includes sections on batch and semi-batch processes and safety automation within each concept area. It discusses the four most common process control loops—feedback, feedforward, ratio, and cascade—and discusses application of these techniques for process control schemes for the most common types of unit operations. It also discusses more advanced and less commonly used regulatory control options such as override, allocation, and split range controllers, includes an introduction to higher level automation functions, and provides guidance for ways to increase the overall safety, stability, and efficiency for many process applications. It introduces the theory behind the most common types of controllers used in the process industries and also provides various additional plant automation-related subjects.
This is a comprehensive, practical, easy-to-read book on process control, covering some of the most important topics in the petrochemical process industry, including Fieldbus, Multiphase Flow Metering, and other recently developed control systems. A compilation of all the best instrumentation and control techniques used in industry today Interesting theoretical content as well as practical topics on planning, integration and application Includes the latest on Fieldbus, Profibus and Multiphase Flow Metering.
PID Control for Industrial Processes presents a clear, multidimensional representation of proportional - integral - derivative (PID) control for both students and specialists working in the area of PID control. It mainly focuses on the theory and application of PID control in industrial processes. It incorporates recent developments in PID control technology in industrial practice. Emphasis has been given to finding the best possible approach to develop a simple and optimal solution for industrial users. This book includes several chapters that cover a broad range of topics and priority has been given to subjects that cover real-world examples and case studies. The book is focused on approaches for controller tuning, i.e., method bases on open-loop plant tests and closed-loop experiments.