Download Free Advanced Calculus An Introduction To Mathematical Analysis Book in PDF and EPUB Free Download. You can read online Advanced Calculus An Introduction To Mathematical Analysis and write the review.

This book is an introduction to mathematical analysis (i.e real analysis) at a fairly elementary level. A great (unusual) emphasis is given to the construction of rational and then of real numbers, using the method of equivalence classes and of Cauchy sequences. The text includes the usual presentation of: sequences of real numbers, infinite numerical series, continuous functions, derivatives and Riemann-Darboux integration. There are also two ?special? sections: on convex functions and on metric spaces, as well as an elementary appendix on Logic, Set Theory and Functions. We insist on a rigorous presentation throughout in the framework of the classical, standard, analysis.
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.
Advanced Calculus: An Introduction to Modem Analysis, an advanced undergraduate textbook,provides mathematics majors, as well as students who need mathematics in their field of study,with an introduction to the theory and applications of elementary analysis. The text presents, inan accessible form, a carefully maintained balance between abstract concepts and applied results ofsignificance that serves to bridge the gap between the two- or three-cemester calculus sequence andsenior/graduate level courses in the theory and appplications of ordinary and partial differentialequations, complex variables, numerical methods, and measure and integration theory.The book focuses on topological concepts, such as compactness, connectedness, and metric spaces,and topics from analysis including Fourier series, numerical analysis, complex integration, generalizedfunctions, and Fourier and Laplace transforms. Applications from genetics, spring systems,enzyme transfer, and a thorough introduction to the classical vibrating string, heat transfer, andbrachistochrone problems illustrate this book's usefulness to the non-mathematics major. Extensiveproblem sets found throughout the book test the student's understanding of the topics andhelp develop the student's ability to handle more abstract mathematical ideas.Advanced Calculus: An Introduction to Modem Analysis is intended for junior- and senior-levelundergraduate students in mathematics, biology, engineering, physics, and other related disciplines.An excellent textbook for a one-year course in advanced calculus, the methods employed in thistext will increase students' mathematical maturity and prepare them solidly for senior/graduatelevel topics. The wealth of materials in the text allows the instructor to select topics that are ofspecial interest to the student. A two- or three ll?lester calculus sequence is required for successfuluse of this book.
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.