Download Free Adsorptive Removal Of Heavy Metals From Groundwater By Iron Oxide Based Adsorbents Book in PDF and EPUB Free Download. You can read online Adsorptive Removal Of Heavy Metals From Groundwater By Iron Oxide Based Adsorbents and write the review.

In general, groundwater is a preferred source of drinking water because of its convenient availability and its constant and good quality. However this source is vulnerable to contamination by several substances. Acceptable quality limits relative to micropollutant contents in drinking water are becoming increasingly lower and efficient elimination treatment processes are being implemented in order to meet these requirements. Metals contaminants at low concentration are difficult to remove from water. Chemical precipitation and other methods become inefficient when contaminants are present in trace concentrations and the process of adsorption is one of the few alternatives available for such situations. This book describes the adsorption method in the removal of selected heavy metals present as cations (Cd2+, Cu2+ and Pb2+) or oxyanions (Cr(VI) and As(V)) using iron oxide coated sand (IOCS) and granular ferric hydroxide (GFH). The effects of pH, natural organic matter (fulvic acid (FA)) and interfering ions (PO43-, Ca2+) on the adsorption efficiency were also assessed. The sorption reactions that take place at the surface of the adsorbent were also described through the surface complexation modelling for Cd2+, Cu2+ and Pb2+ adsorption. Batch adsorption tests and rapid small scale column tests (RSST) were used as laboratory methods.
In the Eastern corridor of Northern region of Ghana, presence of high fluoride concentration in the groundwater has made many drilled boreholes unusable for drinking. Little is, however, known about the factors contributing to the occurrence of high fluoride in this part of Ghana and it's spatial distribution. Treatment of the fluoride-contaminated groundwater by adsorption is also hampered by the lack of suitable adsorbents that are locally available. Based on principal component analysis, and saturation indices calculations, this thesis highlights that, the predominant mechanisms controlling the fluoride enrichment probably include calcite precipitation and Na/Ca exchange processes, both of which deplete Ca from the groundwater, and promote the dissolution of fluorite. The mechanisms also include F-/OH-anion exchange processes, as well as evapotranspiration processes which concentrate the fluoride ions, hence increasing its concentration in the groundwater. Spatial mapping showed that the high fluoride groundwaters occur predominantly in the Saboba, Cheriponi and Yendi districts. The thesis further highlights that, modifying the surface of indigenous materials by an aluminium coating process, is a very promising approach to develop a suitable fluoride adsorbent. Aluminum oxide coated media reduced fluoride in water from 5. 0 ± 0.2 mg/L to ≤ 1.5 mg/L (which is the WHO health based guideline for fluoride), in both batch and continuous flow column experiments in the laboratory. Kinetic and isotherm studies, thermodynamic calculations, as well as analytical results from Fourier Transform Infrared Spectroscopy and Raman spectroscopy, suggest the mechanism of fluoride adsorption onto aluminium oxide coated media involved both physisorption and chemisorption processes. Field testing in a fluoritic community in Northern Ghana showed that the adsorbent is also capable of treating fluoride-contaminated groundwater in field conditions, suggesting it is a promising defluoridation adsorbent. The adsorbent also showed good regenerability potential that would allow re-use, which could make it practically and economically viable. Additional research is, however, required to further increase the fluoride adsorption capacity of developed adsorbent.
Details the water research applications of nanotechnology in various areas including environmental science, remediation, membranes, nanomaterials, and water treatment At the nano size, materials often take on unique and sometimes unexpected properties that result in them being ‘tuned’ to build faster, lighter, stronger, and more efficient devices and systems, as well as creating new classes of materials. In water research, nanotechnology is applied to develop more cost-effective and high-performance water treatment systems, as well as to provide instant and continuous ways to monitor water quality. This volume presents an array of cutting-edge nanotechnology research in water applications including treatment, remediation, sensing, and pollution prevention. Nanotechnology applications for waste water research have significant impact in maintaining the long-term quality, availability, and viability of water. Regardless of the origin, such as municipal or industrial waste water, its remediation utilizing nanotechnology can not only be recycled and desalinized, but it can simultaneously detect biological and chemical contamination. Application of Nanotechnology in Water Research describes a broad area of nanotechnology and water research where membrane processes (nanofiltration, ultrafiltration, reverse osmosis, and nanoreactive membranes) are considered key components of advanced water purification and desalination technologies that remove, reduce, or neutralize water contaminants that threaten human health and/or ecosystem productivity and integrity. Various nanoparticles and nanomaterials that could be used in water remediation (zeolites, carbon nanotubes, self-assembled monolayer on mesoporous supports, biopolymers, single-enzyme nanoparticles, zero-valent iron nanoparticles, bimetallic iron nanoparticles, and nanoscale semiconductor photocatalysts) are discussed. The book also covers water-borne infectious diseases as well as water-borne pathogens, microbes, and toxicity approach.
This book highlights the latest research on dissolved heavy metals in drinking water and their removal.
This book contains both practical and theoretical aspects of groundwater resources relating to geochemistry. Focusing on recent research in groundwater resources, this book helps readers to understand the hydrogeochemistry of groundwater resources. Dealing primarily with the sources of ions in groundwater, the book describes geogenic and anthropogenic input of ions into water. Different organic, inorganic and emerging contamination and salinity problems are described, along with pollution-related issues affecting groundwater. New trends in groundwater contamination remediation measures are included, which will be particularly useful to researchers working in the field of water conservation. The book also contains diverse groundwater modelling examples, enabling a better understanding of water-related issues and their management. Groundwater Geochemistry: Pollution and Remediation offers the reader: An understanding of the quantitative and qualitative challenges of groundwater resources An introduction to the environmental geochemistry of groundwater resources A survey of groundwater pollution-related issues Recent trends in groundwater conservation and remediation Mathematical and statistical modeling related to groundwater resources Students, lecturers and researchers working in the fields of hydrogeochemistry, water pollution and groundwater will find Groundwater Geochemistry an essential companion.
APPLIED WATER SCIENCE VOLUME 2 The second volume in a new two-volume set on applied water science, this book provides understanding, occurrence, identification, toxic effects and control of water pollutants in an aquatic environment using green chemistry protocols. The high rate of industrialization around the world has led to an increase in the rate of anthropogenic activities which involve the release of different types of contaminants into the aquatic environment. This generates high environmental risks, which could affect health and socio-economic activities if not treated properly. There is no doubt that the rapid progress in improving water quality and management has been motivated by the latest developments in green chemistry. Over the past decade, sources of water pollutants and the conventional methods used for the treatment of industrial wastewater treatment have flourished. Water quality and its adequate availability have been a matter of concern worldwide particularly in developing countries. According to a World Health Organization (WHO) report, more than 80% of diseases are due to the consumption of contaminated water. Heavy metals are highly toxic and are a potential threat to water, soil, and air. Their consumption in higher concentrations gives hazardous outcomes. Water quality is usually measured in terms of chemical, physical, biological, and radiological standards. The discharge of effluent by industries contains heavy metals, hazardous chemicals, and a high amount of organic and inorganic impurities that can contaminate the water environment, and hence, human health. Therefore, it is our primary responsibility to maintain the water quality in our respective countries. This book provides understanding, occurrence, identification, toxic effects and control of water pollutants in an aquatic environment using green chemistry protocols. It focuses on water remediation properties and processes including industry-scale water remediation technologies. This book covers recent literature on remediation technologies in preventing water contamination and its treatment. Chapters in this book discuss remediation of emerging pollutants using nanomaterials, polymers, advanced oxidation processes, membranes, and microalgae bioremediation, etc. It also includes photochemical, electrochemical, piezoacoustic, and ultrasound techniques. It is a unique reference guide for graduate students, faculties, researchers and industrialists working in the area of water science, environmental science, analytical chemistry, and chemical engineering. This outstanding new volume: Provides an in-depth overview of remediation technologies in water science Is written by leading experts in the field Contains excellent, well-drafted chapters for beginners, graduate students, veteran engineers, and other experts alike Discusses current challenges and future perspectives in the field Audience: This book is an invaluable guide to engineers, students, professors, scientists and R&D industrial specialists working in the fields of environmental science, geoscience, water science, physics and chemistry.
This book reviews principles, techniques and applications of metal, metal oxides, metal sulfides and metal-organic frameworks for removal and degradation of pollutants. Natural materials are often much more advanced than synthetic materials in terms of circularity and are functional, often biodegradable, recyclable and generate little waste. They are, therefore, a source of inspiration for new synthetic materials. In particular, recent research has focused on various types of functional materials such as organic, inorganic, nanostructured and composites for the remediation of environmental pollution.
Adsorption processes have played a central role in water treatment for many years but their importance is on the rise with the continuous discoveries of new micropollutants in the water cycle (pharmaceuticals for example). In addition to the classical application in drinking water treatment, other application fields are attracting increasing interest, such as wastewater treatment, groundwater remediation, treatment of landfill leachate, and so on. Based on the author's long-term experience in adsorption research, the scientific monograph treats the theoretical fundamentals of adsorption technology for water treatment from a practical perspective. It presents all the basics needed for experimental adsorption studies as well as for process modelling and adsorber design. Topics discussed in the monograph include: introduction into basic concepts and practical applications of adsorption processes; adsorbents and their characterisation, single and multi-solute adsorption equilibria, adsorption kinetics, adsorption dynamics in fixed-bed adsorbers and fixed-bed adsorber design, regeneration and reactivation of adsorbents, introduction into geosorption processes in bank filtration and groundwater recharge. According to the increasing importance of micropollutants in the water cycle, particular attention is paid to their competitive adsorption in presence of background organic matter. Clear illustrations, extensive literature references and a useful index make this work indispensible for both scientists and technicians involved in water treatment.
Synthesis and design of new nanocatalysts is an important area of research that aims to introduce multiple types of useful applications in a greener market. The necessity of nanostructuring the active sites has emerged as the key point in a successful design of the catalysts. The book covers the progress in this research area done in the last ten years. It includes the classification of catalysts and structure of active sites at the nanoscale. The book covers examples to present the concept, evolution of nanocatalysts from the perspective of chemistry of materials and their applications.