Download Free Adsorption On Silica Surfaces Book in PDF and EPUB Free Download. You can read online Adsorption On Silica Surfaces and write the review.

"Progresses from theoretical issues to applications. Contains a historical overview, in-depth considerations of various scenarios of silica adsorption, and results from the latest research. Invaluable for broad coverage of the expanding field of silica research."
"Progresses from theoretical issues to applications. Contains a historical overview, in-depth considerations of various scenarios of silica adsorption, and results from the latest research. Invaluable for broad coverage of the expanding field of silica research."
In spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well
Hardbound. There has been a lack of authoritative, current information on the structure, investigation and preparation of inorganic sorbents, their numerous applications as well as the adsorption from gaseous and liquid phases on new and chemically modified inorganic solids. This volume deals with the above-mentioned themes and presents 34 up-to-date comprehensive and critical reviews written by well-recognized authorities. The sorbents discussed are primarily mineral ones. Each contribution treats a problem critically by showing its development, presenting documentation on the state-of-the-art and identifying subjects for further research.The book will be of interest to researchers in academic institutes and industrial laboratories engaged in the fields of surface chemistry, inorganic chemistry, adsorption, ion-exchange, catalysis, chromatography and spectroscopy of the surface phenomena, as well as to students attending graduate and postgraduate cour
Oxide surface materials are widely used in many applications, in particular where chemically modified oxide surfaces are involved. Indeed, in disciplines such as separation, catalysis, bioengineering, electronics, ceramics, etc., modified oxide surfaces are very important. In all cases, the knowledge of their chemical and surface characteristics is of great importance for the understanding and eventual improvement of their performances. This book reviews the latest techniques and procedures in the characterization and chemical modification of the silica surface, presenting a unified and state-of-the-art approach to the relevant analysis techniques and modification procedures, covering 1000 references integrated into one clear concept.
Fundamentals of Adsorption contains 2 plenary lectures and 96 selected papers from the IVth International Conference, Kyoto, May, 1992. The topics cover a wide range of studies from fundamentals to applications: characterization of porous adsorbents, molecular simulation, adsorption isotherms, diffusion in adsorbents, breakthrough detection, chromatography, pressure swing operation, etc. Model studies on adsorption, surface characterization, microporosimetry, molecular simulations of equilibrium and diffusion, computer simulation of adsorption beds, and many theoretical studies are also included. Special attention is given to: bulk gas separation and purification, solvent recovery, bioproduct separation, environmental pollution control, methane storage, adsorption cooling and resources recovery.
Each of the many different varieties of silica is characterised by its crystalline or amorphous structure and its specific physico-chemical surface properties. It is these surface characteristics which determine the applications of the silica, be it for chromatography, dehydration, polymer reinforcement or other processes. All the recent advances in the use of established and more modern methods for the determination of the surface and morphological characteristics of silicas, are found in this book written by a team of European experts. Analytical methods discussed include: solid state nuclear magnetic resonance, infra-red spectroscopy and adsorption methods. Emphasis is given to the nature and distribution of hydroxyl groups on silica surfaces; the final chapter gives a general survey of the health and safety aspects of silica.
The aim of this book is to provide all those involved in designing and running adsorption processes with a guide to adsorption technology and design.
The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. - Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface - Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites - Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals
Offering a materials science point of view, the author covers the theory and practice of adsorption and diffusion applied to gases in microporous crystalline, mesoporous ordered, and micro/mesoporous amorphous materials. Examples used include microporous and mesoporous molecular sieves, amorphous silica, and alumina and active carbons, akaganeites, prussian blue analogues, metal organic frameworks and covalent organic frameworks. The use of single component adsorption, diffusion in the characterization of the adsorbent surface, pore volume, pore size distribution, and the study of the parameters characterizing single component transport processes in porous materials are detailed.